摘要
为了定量评价体育锻炼的效果,需要构建体育评价决策支持系统,结合大数据分析方法进行体育评价决策,从而制定规范的体育训练计划,提升体育锻炼的效果,提出一种基于关联规则的体育评价决策支持系统设计方法。采用大数据挖掘方法进行体育评价的信息挖掘,提取体育评价决策支持系统数据信息流的自相关特征,通过神经网络分类方法进行体育评价决策信息的融合聚类处理。结合体育评价的先验知识进行关联规则特征集构建,采用关联规则特征提取和大数据信息融合处理技术,实现体育评价决策支持系统的数据库构造。采用数据库优化调度和访问方法进行体育评价决策支持系统的底层软件开发,在嵌入式的Linux和B/S构架体系下实现体育评价决策支持系统的开发设计。测试结果表明,采用该系统进行体育评价决策支持的准确性较高,数据融合性较好,提高了体育评价决策能力。
In order to evaluate the effect of physical exercise quantitatively,it is necessary to construct a decision support system for sports evaluation,and combine big data's analysis method to carry out sports evaluation and decision-making,so as to formulate a standardized physical training plan and improve the effect of physical exercise.A design method of sports evaluation decision support system is prosented based on association rules.Big data mining method is used to mine sports evaluation information,to extract the autocorrelation feature of sports evaluation decision support system data flow,and to use neural network classification method to deal with sports evaluation decision information fusion clustering.Combining the prior knowledge of sports evaluation,the feature set of association rules is constructed,and the database of sports evaluation decision support system is constructed by using the technology of feature extraction of association rules and information fusion of big data.The bottom software of sports evaluation decision support system is developed by using database optimization scheduling and accessing method.The development of sports evaluation decision support system is realized under the embedded Linux and B/S architecture.The test results show that the system has higher accuracy and better data fusion for sports evaluation decision support,and improves the ability of sports evaluation decision-making.
作者
宋香君
SONG Xiangjun(Shanghai Jianqiao University,Shanghai 201306,China)
出处
《自动化与仪器仪表》
2019年第7期91-94,共4页
Automation & Instrumentation
基金
上海市德育实践课题:民办高校群体性事件预防及应对机制研究(No.2016-D-123)
关键词
关联规则
体育
评价决策支持系统
数据挖掘
数据库
association rules
sports
evaluation decision support system
data mining
database