摘要
研究一类具有时滞和马尔科夫切换的随机抛物方程组的均方稳定性.通过建立比较原理,运用时滞微分不等式和随机分析技巧,获得了该系统的均方稳定、均方一致稳定、均方渐近稳定和均方指数稳定.最后,给出了主要定理的一个应用实例.
This paper investigates the mean square stability for stochastic parabolic equations with delay and Markovian switching. By establishing the comparison principle, using delay differential inequality and stochastic analysis techniques, the mean square stability, mean square uniform stability, mean square asymptotic stability and mean square exponential stability for the system are obtained. Finally, an example is given to illustrate the main theoretical result.
作者
李钊
李树勇
LI Zhao;LI Shuyong(College of Mathematics Science,Sichuan Normal University,Chengdu 610066;School of Mathematics and Physics,Mianyang Teachers’ College,Mianyang 621000)
出处
《系统科学与数学》
CSCD
北大核心
2019年第4期648-658,共11页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(11571245)资助课题
关键词
比较原理
均方稳定
均方渐近稳定
均方指数稳定
具有时滞和马尔科夫切换的随机抛物方程组
Comparison principle
mean square stability
mean square asymptotic st ability
mean square exponential stability
stochastic parabolic equations with delay and Markovian switching