期刊文献+

冲床套料中模拟重力算法的仿真研究

Simulation Research on an Algorithm Based on Gravity Principles in Punching Nesting
下载PDF
导出
摘要 装载问题是数学上的一类最优化问题,一种常见情形是在二维封闭容器内放置尽可能多的等大圆形,且这些圆形不能互相重叠。上述问题在冲床优化套料方面有明确的应用价值。从“在板料上冲压更多的工件”这一实际问题出发,讨论特殊形式下装载问题的一种模拟重力算法,以提高材料的利用率。针对冲床优化套料的具体应用情况,推导了旋转前后的坐标转换公式。最后将上述算法与其它几种常见的冲床套料算法进行了对比,结果表明,提出的算法在套料效果上优于其它几种算法,但是耗时相对较长,适用于对运算时间要求低、对套料效果要求高的场合。 Packing problem is a class of optimization problem in mathematics. A common circumstance of packing problems is to pack a given two - dimensional closed container with as many circles as possible where these circles have the same size and cannot overlap each other. This problem has clear values of application in punching nesting optimization. This paper starts out from the practical problem that is to punch more work-pieces in specific materials. A nesting algorithm was proposed based on gravity principles of this circumstance, which is to improve the utilization rate of the materials. Coordinates transformation formula of rotation was derived according to specific circumstances of nesting in punching system. Furthermore, comparisons with other common nesting algorithms were made. The result shows that the algorithm proposed in this paper has better effects but lower operation speeds than other algorithms. Therefore this algorithm is applicable to the occasions which have strict requirements on nesting effect and loose requirements on operation time.
作者 陈博 唐厚君 王堃 韩斐 CHEN Bo;TANG Hou-jun;WANG Kun;HAN Fei(Department of Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Fangling Software Co.,Ltd,Shanghai 200241,China)
出处 《计算机仿真》 北大核心 2019年第7期165-168,207,共5页 Computer Simulation
关键词 装载问题 套料算法 最优化问题 Packing problems Nesting algorithm Optimization problems
  • 相关文献

参考文献5

二级参考文献37

  • 1刘景发,李刚.求解带平衡性能约束的圆形装填问题的吸引盘填充算法[J].中国科学:信息科学,2010,40(3):423-432. 被引量:16
  • 2康雁,黄文奇.基于禁忌搜索的启发式算法求解圆形packing问题[J].计算机研究与发展,2004,41(9):1554-1558. 被引量:12
  • 3刘胡瑶,何援军.基于轨迹计算的临界多边形求解算法[J].计算机辅助设计与图形学学报,2006,18(8):1123-1129. 被引量:13
  • 4詹叔浩 黄文奇.一类几何布局问题的计算机辅助设计[J].应用数学学报,1983,6(1):34-46.
  • 5K A Dowsland, W B Dowsland. Packing problems. European Journal of Operational Research, 1992, 56(1): 2~14
  • 6H Dyckhoff, G Scheithauer, J Terno. Annotated Bibliographies in Combinatorial Optimization: Cutting and Packing (C&P). Chichester: John Wiley & Sons Press, 1997
  • 7A Lodi, S Martello, M Monaci. Two-dimensional packing problems: A survey. European Journal of Operational Research 2002, 141(2): 241~252
  • 8M R Garey, D S Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: Freeman, 1979
  • 9H T Croft, K J Falconer, R K Guy. Unsolved Problem in Geometry. New York: Springer-Verlag, 1991
  • 10K A Dowsland. Palletisation of cylinders in cases. Operation Research Spectrum, 1991, 13(1): 204~212

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部