期刊文献+

基于视觉注意机制的行人目标检测 被引量:5

The Research of Pedestrian Detection Algorithm Based on Visual Attention
下载PDF
导出
摘要 在分析现有运动目标检测算法的基础上,针对三帧差分检测易出现空洞及边缘不连续等问题,提出一种基于视觉注意机制的行人目标检测算法。该算法首先,通过借鉴人类视觉显著性现有的研究成果获得视觉显著图;其次,使用一种逻辑迭代三帧差分法,将其与基于区域搜索迭代的内轮廓填充法相结合,获得运动区域,融合两种算法提取出ROI;最后,采用HOG特征结合SVM分类器对ROI进行行人检测。对比实验结果表明,该算法连通性好,准确率高达97%以上。 Based on the analysis of the existing moving target detection algorithm, for the phenomena in three - frame difference detection, such as cavity and edge discontinuity ,, a pedestrian object detection algorithm based on visual attention mechanism was proposed. Firstly, we used the existing research results of human visual saliency to obtain the visual saliency map;Secondly, a logical iterative three-frame difference method was used to obtain the motion region combine with a contour filling method based on the local region research, two algorithms were integrated to obtain the region of interest. Finally, HOG features was used combined with support vector machines classifier for pedestrian detection in region of interest. The experimental results show that the algorithm has good connectivity and the accuracy is over 97 %.
作者 赵谦 薛改样 杨新花 ZHAO Qian;XUE Gai-yang;YANG Xin-hua(School of Communication and Information Engineering,Xi'an University of Science and Technology,Xi'an Shanxi 710054,China;Shenzhen Kelie Technology Co.,Ltd. Shenzhen Guangdong 518057,China)
出处 《计算机仿真》 北大核心 2019年第7期411-414,共4页 Computer Simulation
基金 陕西省科技计划工业科技攻关(2017GY-073,2015GY-023) 西安市碑林区应用技术研发(GX1811)
关键词 视觉显著图 三帧差分法 轮廓填充法 感兴趣区域 支持向量机 Visual saliency map Three frame difference detection A contour filling method ROI SVM
  • 相关文献

参考文献9

二级参考文献65

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2肖利平,曹炬,高晓颖.复杂海地背景下的舰船目标检测[J].光电工程,2007,34(6):6-10. 被引量:33
  • 3储昭亮,王庆华,陈海林,徐守时.基于极小误差阈值分割的舰船自动检测方法[J].计算机工程,2007,33(11):239-241. 被引量:25
  • 4S Dasiopoulou, V Mezaris, I Kompatsiaris, V. K Papastathis, M G Strintzis. Knowledge -assisted semantic video object detection [J]. IEEE Transactions on Circuits and Systems for Video Tech- nology, 2005,15 ( 10 ) : 1210 - 1224.
  • 5Vijay Mahadevan, Nuno Vasconcelos. Spatiotemporal Saliency in Dynamic Scenes [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32 ( 1 ) : 171 - 177.
  • 6L Itti, C Koch, E Niebur. A model of saliency - based visual at- tention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 ( 11 ) :1254 - 1259.
  • 7W H Cheng, W T. Chu, J L Wu. A visual attention based region -of interest determination framework for video sequences [ J ]. IE- ICE Transaction on Information and Systems, 2005,85 ( 7 ) : 1578 - 1586.
  • 8Guo Chenlei, Zhang Liming. A Novel Muhiresolution Spatiotempo- ral Saliency Detection Model and Its Applications in Image and Video Compression[ J. IEEE Transactions on Image Processing, 2010,19(1) :185 -198.
  • 9Liu Chang, Pong C Yuen, Qiu Guoping. Object motion detection using information theoretic spatio - temporal saliency [ J ]. Pattern Recognition, 2009,42(2) :2897 -2906.
  • 10N D B Bruce, J K Tsotsos. Saliency based on information maximi- zation [ C ]. Advances in Neural Information Processing Systems, 2006:155 - 162.

共引文献48

同被引文献36

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部