期刊文献+

基于稀疏故障演化判别分析的故障根源追溯 被引量:4

Sparse Fault Degradation Oriented Fisher Discriminant Analysis Based Fault Trace
下载PDF
导出
摘要 火力发电过程规模庞大,过程变量众多.在故障发生时,部分变量将受故障扰动影响偏离正常运行状态,分析这些故障变量之间的故障传递关系并找到根源故障变量,这对于定位故障位置以及排除故障具有重大意义.因此采用稀疏演化判别分析方法(FDFDA)隔离火电过程中的故障变量,随后对隔离到的故障变量进行格兰杰因果分析,追溯故障根源. The thermal power processes contain many variables, while only a part of variables will be influenced when the fault occurs. It is meaningful to analyze the fault causalities, which may help track root fault reasons and locate abnormal components. Therefore, for the fault processes, this paper isolates the faulty variables on basis of sparse fault degradation oriented fisher discriminant analysis (FDFDA) and then analyzes the causalities between different variables by Granger Causality analysis for identifying root faulty reasons.
作者 范海东 王玥 李清毅 赵春晖 FAN Hai-dong;WANG Yue;LI Qing-yi;ZHAO Chun-hui(Zhejiang Energy Group Co Ltd, Hangzhou 310007, China;College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China)
出处 《控制工程》 CSCD 北大核心 2019年第7期1239-1244,共6页 Control Engineering of China
基金 NSFC-浙江两化融合联合基金(项目批准号:U1709211) 浙江省重点研发计划项目(2019C03100和2019C01048) 国家自然科学基金重点项目(No.61433005)
关键词 故障变量隔离 因果分析 故障追溯 Faulty variables isolation causalities analysis fault trace
  • 相关文献

参考文献2

二级参考文献73

  • 1FengDING TongwenCHEN.Modeling and Identification of Multirate Systems[J].自动化学报,2005,31(1):105-122. 被引量:35
  • 2李建强,刘吉臻,张栾英,牛成林.基于数据挖掘的电站运行优化应用研究[J].中国电机工程学报,2006,26(20):118-123. 被引量:62
  • 3Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2): 12- 24.
  • 4Kano M, Nagao K, Hasebe S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers & Chemical Engineering, 2002, 26(2): 161- 174.
  • 5Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring[J]. J of Chemometrics, 2001, 15(9): 715-742.
  • 6Qin S J, Cherry G, Good R, et al. Semiconductor manufacturing process control and monitoring: A fab-wide framework[J]. J of Process Control, 2006, 16(3): 179-191.
  • 7Zhang Y, Dudzic M S. Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations[J]. J of Process Control, 2006, 16(8): 819-829.
  • 8Undey C, Tatara E, Cinar A. Real-time batch process supervision by integrated knowledge-based systems and multivariate statistical methods[J]. Engineering Applications of Artificial Intelligence, 2003, 16(5/6): 555- 566.
  • 9Desborough L, Harris T. Performance assessment measures for univariate feedback control[J]. J of Chemical Engineering, 1992, 70(6): 262-268.
  • 10Kesavan P, Lee J H. Diagnostic tools for multivariable model-based control systems[J]. Industial Engineering Chemistry Research, 1993, 36(7): 2725-2738.

共引文献247

同被引文献81

引证文献4

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部