期刊文献+

A novel graphene oxide-carbon nanotubes anchored α-FeOOH hybrid activated persulfate system for enhanced degradation of Orange Ⅱ 被引量:4

A novel graphene oxide-carbon nanotubes anchored α-FeOOH hybrid activated persulfate system for enhanced degradation of Orange Ⅱ
原文传递
导出
摘要 Persulfate activation has been applied as one of the efficient advanced oxidation processes(AOPs) to remediate polluted environments. In this study, a novel α-FeOOH anchored by graphene oxide(GO)-carbon nanotubes(CNTs) aerogel(α-FeOOH@GCA) nanocomposite activated persulfate system(α-FeOOH@GCA + K2S2O8) was applied for decolorization of Orange Ⅱ(OⅡ). The decolorization of OⅡ was remarkably enhanced to a level of ~ 99% in this system compared with that of pristine α-FeOOH(~ 44%) or GO-CNTs(~18%). The enhanced catalytic activity of α-FeOOH@GCA was due to the formation of a heterojunction byα-FeOOH and GO-CNTs as confirmed by the presence of Fe–O–C chemical bonds. The degradation intermediates of OⅡ were comprehensively identified. The proposed degradation pathway of OⅡ begins with the destruction of the conjugated structures of OⅡ by the dominant reactive oxygen species, surface-bound SO4·-. The decolorization efficiency of OⅡ by the α-FeOOH@GCA activated persulfate system decreased from the first to third cycle of recycling. Ultraviolet(UV) irradiation or introduction of a small amount of Fe2+ could restore the activation of this system. The results show that the α-FeOOH@GCA persulfate activation system promises to be a highly efficient environmental remediation method for organic pollutants. Persulfate activation has been applied as one of the efficient advanced oxidation processes(AOPs) to remediate polluted environments. In this study, a novel α-FeOOH anchored by graphene oxide(GO)-carbon nanotubes(CNTs) aerogel(α-FeOOH@GCA) nanocomposite activated persulfate system(α-FeOOH@GCA + K2S2O8) was applied for decolorization of Orange Ⅱ(OⅡ). The decolorization of OⅡ was remarkably enhanced to a level of ~ 99% in this system compared with that of pristine α-FeOOH(~ 44%) or GO-CNTs(~18%). The enhanced catalytic activity of α-FeOOH@GCA was due to the formation of a heterojunction byα-FeOOH and GO-CNTs as confirmed by the presence of Fe–O–C chemical bonds. The degradation intermediates of OⅡ were comprehensively identified. The proposed degradation pathway of OⅡ begins with the destruction of the conjugated structures of OⅡ by the dominant reactive oxygen species, surface-bound SO4·-. The decolorization efficiency of OⅡ by the α-FeOOH@GCA activated persulfate system decreased from the first to third cycle of recycling. Ultraviolet(UV) irradiation or introduction of a small amount of Fe2+ could restore the activation of this system. The results show that the α-FeOOH@GCA persulfate activation system promises to be a highly efficient environmental remediation method for organic pollutants.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第9期73-84,共12页 环境科学学报(英文版)
基金 supported by China’s National Science Foundation(No.21377039)
关键词 Graphene oxide GOETHITE Nanocomposite PERSULFATE activation DYE Wastewater treatment Graphene oxide Goethite Nanocomposite Persulfate activation Dye Wastewater treatment
  • 相关文献

参考文献1

二级参考文献1

共引文献40

同被引文献17

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部