期刊文献+

基于邻域最小生成树的半监督极化SAR图像分类方法 被引量:3

Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree
下载PDF
导出
摘要 该文针对极化SAR图像分类中只有少量标记样本的问题,提出了一种基于邻域最小生成树的半监督极化SAR图像分类方法。该方法针对极化SAR图像以像素为分类对象的特点,结合自训练方法的思想,利用极化SAR图像像素点的空间信息,提出了基于邻域最小生成树辅助学习的样本选择策略,增加自训练过程中被选择无标记样本的可靠性,扩充标记样本数量,训练更好的分类器。最终用训练好的分类器对极化SAR图像进行测试。对3组真实的极化SAR图像进行测试,实验结果表明,该方法在只有少量标记样本的情况下能获得满意的分类结果,且分类正确率明显优于传统的分类算法。 In this paper, a novel semi-supervised classification method based on the Neighborhood Minimum Spanning Tree (NMST) is proposed to solve the Polarimetric Synthetic Aperture Radar (PolSAR) terrain classification when labeled samples are few. Combining the idea of self-training method and spatial information of the pixels in PolSAR image, a new help-training sample selection strategy based on spatial neighborhood information is proposed, named as NMST, to select the high reliable unlabeled samples to enlarge the training set and improve the base classifier. Finally, the PolSAR image is classified by this improved classifier. The experiments results tested on three PolSAR data sets show that the proposed method achieves a better performance than existing classification methods when the number of labeled samples is few.
作者 滑文强 王爽 郭岩河 谢雯 HUA Wenqiang;WANG Shuang;GUO Yanhe;XIE Wen(School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an 710121, China;Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing,Xi’an University of Posts and Telecommunications, Xi’an 710121, China;Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, InternationalResearch Center for Intelligent Perception and Computation, Xidian University, Xi’an, 710071, China)
出处 《雷达学报(中英文)》 CSCD 北大核心 2019年第4期458-470,共13页 Journal of Radars
基金 国家自然科学基金面上项目(61771379) 陕西省普通高等学校重点学科专项~~
关键词 极化SAR图像 地物分类 半监督 最小生成树 PolSAR Terrain classification Semi-supervised learning Minimum spanning tree
  • 相关文献

参考文献1

同被引文献15

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部