期刊文献+

引入低秩约束先验的深度子空间聚类

Deep Subspace Clustering with Low Rank Constrained Prior
下载PDF
导出
摘要 大多数子空间聚类算法将高维数据映射到低维子空间时不能较好捕获数据间几何结构.针对上述问题,文中提出引入低秩约束先验的深度子空间聚类算法,兼顾数据全局和局部结构信息.算法结合低秩表示与深度自编码器,利用低秩约束捕获数据全局结构,并将约束神经网络的潜在特征表示为低秩.自编码通过最小化重构误差进行非线性低维子空间映射,保留数据的局部特性.以多元逻辑回归函数作为判别模型,预测子空间分割.整个算法在无监督联合学习框架下进行优化.在5个数据集上的实验验证文中方法的有效性. Most subspace clustering methods cannot capture geometric structures of data effetively while mapping high-dimensional data into a low-dimensional subspace. Aiming at this problem, a deep subspace clustering algorithm with low rank constrained prior(DSC-LRC) is proposed, maintaining both global and local structure information. Low-rank representation(LRR) is combined with depth autoencoder, global structures of data are captured by low rank constraint, and potential characteristics of constrained neural network are represented as low rank. Data are nonlinearly mapped into a latent space by minimizing differences between reconstructions and inputs with the local features of the data maintained. Multivariate logistic regression function is considered as a discriminant model to predict subspace segmentation. Parameters updating and clustering performance optimization are conducted in an unsupervised joint learning framework. Experiments on five datasets validate the effectiveness of DSC-LRC.
作者 张敏 周治平 ZHANG Min;ZHOU Zhiping(School of Internet of Things Engineering, Jiangnan University, Wuxi 214122;Engineering Research Center of Internet of Things Technology Applications, Ministry of Education, Jiangnan University, Wuxi 214122)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2019年第7期652-660,共9页 Pattern Recognition and Artificial Intelligence
关键词 低秩约束先验 自编码器 归一化层 联合学习框架 Low Rank Constrained Prior Autoencoder Soft-Max Layer Joint Learning Framework
  • 相关文献

参考文献3

二级参考文献69

  • 1徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:68
  • 2蔡忠伟,李建东.基于双谱的通信辐射源个体识别[J].通信学报,2007,28(2):75-79. 被引量:84
  • 3曾宪华,罗四维.动态增殖流形学习算法[J].计算机研究与发展,2007,44(9):1462-1468. 被引量:13
  • 4LAW M, ZHANG Nan, JAIN A K. Nonlinear manifold learning for data stream[C]//Proceedings of the Fourth SIAM International Conference on Data Mining. Lake Buena Vista, USA, 2004: 33-44.
  • 5SEUNG H, LEE D. The manifold ways of perception[J]. Science, 2000, 290(5500): 2268-2269.
  • 6PEARSON K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine, 1901, 2(6): 559-572.
  • 7TENENBAUM J, DE SILVA V, LANGFORD J. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 8BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 9ROWEI S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 10DE SILVA V, TENENBAUM J B. Global versus local methods in nonlinear dimensionality reduction[M]//BECKER S, THRUN S, OBERMAYER K. Advances in Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2003: 721-728.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部