摘要
大多数子空间聚类算法将高维数据映射到低维子空间时不能较好捕获数据间几何结构.针对上述问题,文中提出引入低秩约束先验的深度子空间聚类算法,兼顾数据全局和局部结构信息.算法结合低秩表示与深度自编码器,利用低秩约束捕获数据全局结构,并将约束神经网络的潜在特征表示为低秩.自编码通过最小化重构误差进行非线性低维子空间映射,保留数据的局部特性.以多元逻辑回归函数作为判别模型,预测子空间分割.整个算法在无监督联合学习框架下进行优化.在5个数据集上的实验验证文中方法的有效性.
Most subspace clustering methods cannot capture geometric structures of data effetively while mapping high-dimensional data into a low-dimensional subspace. Aiming at this problem, a deep subspace clustering algorithm with low rank constrained prior(DSC-LRC) is proposed, maintaining both global and local structure information. Low-rank representation(LRR) is combined with depth autoencoder, global structures of data are captured by low rank constraint, and potential characteristics of constrained neural network are represented as low rank. Data are nonlinearly mapped into a latent space by minimizing differences between reconstructions and inputs with the local features of the data maintained. Multivariate logistic regression function is considered as a discriminant model to predict subspace segmentation. Parameters updating and clustering performance optimization are conducted in an unsupervised joint learning framework. Experiments on five datasets validate the effectiveness of DSC-LRC.
作者
张敏
周治平
ZHANG Min;ZHOU Zhiping(School of Internet of Things Engineering, Jiangnan University, Wuxi 214122;Engineering Research Center of Internet of Things Technology Applications, Ministry of Education, Jiangnan University, Wuxi 214122)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2019年第7期652-660,共9页
Pattern Recognition and Artificial Intelligence
关键词
低秩约束先验
自编码器
归一化层
联合学习框架
Low Rank Constrained Prior
Autoencoder
Soft-Max Layer
Joint Learning Framework