期刊文献+

基于影像组学的非小细胞肺癌淋巴结转移预测 被引量:14

Radiomics Based Lymph Node Metastasis Prediction in Non-small-cell Lung Cancer
下载PDF
导出
摘要 在非小细胞肺癌的临床诊疗中,淋巴结是否转移对于医生制定手术方案有重要指导意义.但是目前临床上缺乏能够安全准确地预测非小细胞肺癌淋巴结转移的方法.本文应用影像组学方法对肺部CT影像进行定量分析来实现对非小细胞肺癌淋巴结是否转移的预测.从广东省人民医院收集了564例满足分析要求的非小细胞肺癌病例数据,并从每例CT影像中提取了386个定量影像特征,包括肿瘤的三维形状特征,表面纹理特征, Gabor特征以及小波特征:然后利用Lasso logistic regression (LLR)来构造非小细胞肺癌淋巴结转移的影像组学标签(Rad-score),并结合临床信息进行多元分析,构造了诺模图个性化预测模型.其中, LLR淋巴结转移预测模型性能在训练集上AUC为0.710,测试集AUC为0.712:在个性化诺模图上,用所有数据进行预测,得到C-index为0.724 (95%CI:0.678~0.770),在一致性曲线上表现较佳,可为临床决策提供有价值的信息. In the clinical diagnosis and treatment of non-small cell lung cancer, it makes great sense for guiding doctors to make operation plans according to lymph node metastasis status. However, a current weak point in clinical is the lack of a method that can be used to predict lymph node metastasis for non-small cell lung cancer safely and accurately. In this article, radiomic method was applied to the lung CT images to achieve quantitative analysis for the prediction of lymph node metastasis for non-small cell lung cancer. We collected 564 non-small cell lung cancer cases that could satisfy the data recruitment from Guangdong General Hospital, from which 386 quantitative radiomic features were extracted each, including the tumor’s three-dimensional shape features, texture features, Gabor features and wavelet features. Then,Lasso logistic regression(LLR) was used to construct the radiomic signature(Rad-score) for the lymph node metastasis of NSCLC. With multivariate analysis of clinical information, the customized prediction nomogram model was built. The performance of the LLR model was shown to have an AUC of 0.710 in the training set and 0.712 in the validation set.Our nomogram model had a C-index of 0.724(95 % CI: 0.678 ~ 0.770) and performed well on the consistency, providing valuable information for clinical decision-making.
作者 王超 刘侠 董迪 臧丽亚 刘再毅 梁长虹 田捷 WANG Chao;LIU Xia;DONG Di;ZANG Li-Ya;LIU Zai-Yi;LIANG Chang-Hong;TIAN Jie(School of Automation, Harbin University of Science and Technology, Harbin 150080;Institute of Automation, Chinese Academy of Sciences, Beijing 100190;Guangdong Gen- eral Hospital, Guangzhou 510080)
出处 《自动化学报》 EI CSCD 北大核心 2019年第6期1087-1093,共7页 Acta Automatica Sinica
基金 国家自然科学基金(81771924,81501616,81671851,81227901,81527805,61231004,81301346,61672197) 国家重点研发项目(2017YFA0205200,2017YFC1308700,2017YFC1308701,2017YFC1309100,2016YFC0103803) 黑龙江省自然科学基金(F201311,12541105) 北京市科学技术委员会(Z171100000117023,Z161100002616022)资助~~
关键词 影像组学 淋巴结转移 套索逻辑斯特回归 诺模图 一致性曲线 Radiomics lymph node metastasis Lasso logistic regression nomogram calibration curve
  • 相关文献

同被引文献119

引证文献14

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部