期刊文献+

大整数乘法器的FPGA设计与实现 被引量:11

FPGA Design and Implementation of Large Integer Multiplier
下载PDF
导出
摘要 大整数乘法是公钥加密中最为核心的计算环节,实现运算快速的大数乘法单元是RSA, ElGamal,全同态等密码体制中急需解决的问题之一。针对全同态加密(FHE)应用需求,该文提出一种基于Sch?nhage-Strassen算法(SSA)的768 kbit大整数乘法器硬件架构。采用并行架构实现了其关键模块64k点有限域快速数论变换(NTT)的运算,并主要采用加法和移位操作以保证并行处理的最大化,有效提高了处理速度。该大整数乘法器在Stratix-V FPGA上进行了硬件验证,通过与CPU上使用数论库(NTL)和GMP库实现的大整数乘法运算结果对比,验证了该文设计方法的正确性和有效性。实验结果表明,该方法实现的大整数乘法器运算时间比CPU平台上的运算大约有8倍的加速。 Large integer multiplication is the most important part in public key encryption, which often consumes most of the computing time in RSA, ElGamal, Fully Homomorphic Encryption(FHE) and other cryptosystems. Based on Sch?nhage-Strassen Algorithm(SSA), a design of high-speed 768 kbit multiplier is proposed. As the key component, an 64 k-point Number Theoretical Transform(NTT) is optimized by adopting parallel architecture, in which only addition and shift operations are employed and thus the processing speed is improved effectively. The large integer multiplier design is validated on Stratix-V FPGA. By comparing its results with CPU using Number Theory Library(NTL) and GMP library, the correctness of this design is proved. The results also show that the FPGA implementation is about eight times faster than the same algorithm executed on the CPU.
作者 谢星 黄新明 孙玲 韩赛飞 XIE Xing;HUANG Xinming;SUN Ling;HAN Saifei(School of Electronic Information, Nantong University, Nantong 226019, China;Engineering Training Center, Nantong University, Nantong 226019, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第8期1855-1860,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61571246) 江苏省研究生科研与实践创新计划项目(KYCX17-1920)~~
关键词 全同态加密 现场可编程门阵列 大数乘法 GMP库 Fully Homomorphic Encryption(FHE) FPGA Large number multiplication GMP library
  • 相关文献

参考文献2

二级参考文献22

  • 1Rivest R, Adleman L, and Dertouzos M. On data banks and privacy homomorphisms[C]. IEEE 17th Annual Symposium on Foundations of Computer Science (FOCS1978) Proceedings, Ann Arbor, Michigan, USA, October 16-18, 1978: 169-177.
  • 2Gentry C. Fully homomorphic encryption using ideal lattices [C]. The 41st ACM Symposium on Theory of Computing (STOC2009) Proceedings, Bethesda, Maryland, USA, May 31- June 2, 2009: 169-178.
  • 3Smart N P and Vercauteren F. Fully homomorphic encryption with relatively small key and ciphertext sizes[C]. The 13rd International Conference on Practice and Theory in Public Key Cryptography (PKC201O) Proceeding, Paris, France, May 26-28, 2010: 420-443.
  • 4Gentry C and Halevi S. Implementing gentry's fully?homomorphic encryption scheme[C]. EUROCRYPT 2011 Proceedings, Tallinn, Estonia, May 15-19,2011: 129-148.
  • 5Stehle D and Steinfeld R. Faster fully homomorphic encryption[C]. ASIACRYPT 2010 Proceedings, Singapore, December 5-9, 2010: 377-394.
  • 6Coron J S, Mandai A, Naccache D, et al.. Fully homomorphic encryption over the integers with shorter public keys[C]. CRYPTO 2011 Proceedings, Santa Barbara, California, USA, August 14-18, 2011: 487-504.
  • 7Bellare M. Practice-oriented provable-security[C]. The First International Workshop on Information Security (ISW 97) Proceedings, 1997, Lecture Notes in Computer Science 1396: 221-231.
  • 8Loftus J, May A, Smart N, et al .. On cca-secure fully homomorphic encryption[EB/OLJ. Cryptology ePrint Archive, Report 2010/560, 2010. http://eprint.iacr.org/ 2010/560.
  • 9Zhang Zhen-fei, Plantard T, and Susilo W. Reaction attack on out sourced computing with fully homomorphic encryption schemes[C]. The 14th International Conference on Information Security and Cryptology Proceedings, Seoul, Korea, November 3D-December 2, 2011: 419-436.
  • 10Hu Yu-pu and Wang Feng-he. An attack on a fully homomorphic encryption scheme[EB/OL]. Cryptology ePrint Archive, Report 2012/561, 2012, http://eprint.iacr.org/2012 /561.

共引文献20

同被引文献70

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部