期刊文献+

神经网络技术在P2P网贷中小企业信用评估中的应用 被引量:1

Application of Neural Network Technology in Credit Evaluation of P2P Network Credit SMEs
下载PDF
导出
摘要 P2P网络借贷被认为是解决中小企业融资难问题的有效途径,但为规避中小企业的违约风险,中小企业信用评估问题的重要性不言而喻。首先,利用P2P平台--点融网的相关中小企业数据特征以及宏观经济指标,构建27个指标的中小企业信用风险评估指标体系;其次,利用Python技术收集点融网上中小企业的相关数据和宏观经济数据作为训练集和测试集样本,采用SMOTE算法解决训练集中样本的不均衡问题;最后,为达到分类降维的目的,用主成分因子分析方法对信用风险指标进行筛选。然后采用两种神经网络技术--多层感知器与径向基函数--来预测中小企业的违约概率。结果表明,多层感知器对于中小企业违约概率的预测能力较强,准确率达到100.00%,预测非违约中小企业违约风险的准确率仅为76.30%,而径向基函数预测正确率略胜一筹,达到92.50%,总体正确率为93.00%。 P2P network lending is considered to be an effective way to solve the financing difficulties of SMEs.However, in order to avoid the default risk of SMEs, the importance of SME credit assessment is self-evident.Firstly, using the P2P platform-related data characteristics of SMEs and macroeconomic indicators, we will build 27 indicators of SME credit risk assessment index system. Secondly, use Python technology to collect relevant data and macroeconomics of SMEs on the Internet. As the training set and test set samples, the SMOTE algorithm is used to solve the imbalance problem in the training set. Finally, in order to achieve the purpose of classification and dimension reduction, the principal component factor analysis method is used to screen the credit risk indicators. Two neural network techniques-multilayer perceptrons and radial basis functions-are then used to predict the probability of default for SMEs. The results show that the multi-layer perceptron has a strong predictive ability for the default probability of SMEs, and the accuracy rate reaches 100.00%. The accuracy rate of non-default SME default risk is only 76.30%, while the radial basis function prediction accuracy is slightly better, reaching 92.50%, the overall correct rate is 93.00%.
作者 李淑锦 潘雨虹 LI Shu-jin;PAN Yu-hong
出处 《生产力研究》 2019年第5期14-22,F0003,共10页 Productivity Research
基金 国家社会科学基金项目“基于大数据的金融零售信用风险评估与智能决策研究”(17BJY233) 教育部人文社会科学青年项目“网络借贷信用风险评估的结构化方法及应用研究”(16YJCZH031)
  • 相关文献

参考文献5

二级参考文献34

  • 1尤瑞章,张晓霞.P2P在线借贷的中外比较分析——兼论对我国的启示[J].金融发展评论,2010(3):97-105. 被引量:58
  • 2张培国.网络信馈-民间金融新的路轻选择.哈尔滨金融高等专科学校学报,2010,(12).
  • 3JENSEN H. Using neural networks for credit scoring[ J ].Managerial Finance, 1992,18(6) : 15 - 26.
  • 4COATS P, PANT L. Recnganizing finasmial distress patterns using a neural network tool[ J ]. Financial Management,1993:142 - 155.
  • 5ALTMAN E, MARCO G, etal. Corporate distress diagnosis:comparisom using linear discriminant analysis and neural netwoeks ( the Italian experience ) [ J ]. J Banking and Finance, 1994, 18:505-529.
  • 6HASHEMI R R,Le BLANC L A, RUCKS C T, et al. A hybrid intelligent system for predicting bank holding structrure[ J ]. European Journal of Operational Research,1998, 109: 390-402.
  • 7WEST D. Neural network credit scoring models [ J ].Computers & Operations Research, 2000, 27:1131 - 1152.
  • 8MALHOTRA R, MALHOTRA D K. Differentiating between good credits and bad credits using neuro-fuzzy systems[J].Computing,Artificial Intelligence and Information Technology, 2002, 136:190-211.
  • 9RUMELHART D E, McCLELLAND J L, the PDF Research Group. Parallel Distributed Processing[M] .Cambridge M A:MIT Press, 1986.Vols 1-2.
  • 10HUSH D R, HORNE.Progress in supervised neural networks[J]. IEEE Signal Process Mag, 1993, 10:8 - 39.

共引文献88

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部