期刊文献+

组合KdV-Burgers方程扭状孤波解的渐近稳定性

Asymptotic Stability of Kink Profile Wave Solutions of the Compound KdV-Burgers Equation
下载PDF
导出
摘要 对组合KdV-Burgers方程单调递减扭状孤波解的渐近稳定性进行了研究。首先推导出该扭状孤波解的一阶、二阶导数的估计,然后再利用L^2能量估计方法和Young不等式,解决了方程中非线性项难以估计的问题,证明了该单调递减扭状孤波解在H^1中是渐近稳定的。进一步利用L^2估计方法和Gargliado-Nirenberg不等式,得到了扰动在L^2与L^∞范数意义下的衰减速率分别为(1+t)^-1/2和(1+t)^-1/4。 The asymptotic stability of monotone decreasing kink profile solitary wave solutions of the compound KdV-Burgers equation was studied.The estimate of the first-order and second-order derivatives of monotone decreasing kink profile solitary wave solutions was obtained and the difficulties caused by nonlinear terms in the compound KdV-Burgers equation in the estimation were overcome by using the L^2 energy estimate method and Young’s inequality.It is proved that the monotone decreasing kink profile solitary wave solution is asymptotically stable in H^1.Moreover,the decay rates of in the sense of L2 and L^∞ norm respectively are (1+t)^-1/2 and (1+t)^-1/4 by using the L^2 estimate method and Gargliado-Nirenberg inequality.
作者 邓升尔 张卫国 DENG Shenger;ZHANG Weiguo(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 CAS CSCD 北大核心 2019年第3期205-213,共9页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11471215)
关键词 组合KDV-BURGERS方程 渐近稳定性 先验估计 衰减速率 compound KdV-Burgers equation asymptotic stability priori estimate decay rate
  • 相关文献

参考文献3

二级参考文献58

  • 1张卫国.B-MKdV方程和B-MBBM方程的一类孤波解[J].兰州大学学报(自然科学版),1993,29(3):14-19. 被引量:7
  • 2Ablowitz, M.J., Segur, H. Solitons and the inverse scattering transform. SIAM, Philiadelphia, 1981.
  • 3Aronson, D.G., Weiberger, H.F. Multidimentional nonlinear diffusion arising in population genetics. Adv. in Math., 30:33-76 (1978).
  • 4Benjamin, T.B., Bona, J.L., Mahony, J.J. Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. London, Set. A, 272:47 78 (1972).
  • 5Benney, D.J. Long waves on liquid films. J. Math. Phys., 45:150-155 (1966).
  • 6Bona, J.L., Dougalia, V.A. An initial-and boundary-value problem for a model equation for propagation of long waves. J. Math. Anal Appl., 75:513 522 (1980).
  • 7Bona, J.L., Schonbek, M.E. Travelling wave solutions to the Korteweg-de Vries-Burgers equation. Proc. R. Soc. Edin., 101A: 207-226 (1985).
  • 8Canosa, J., Gazdag, J. The Korteweg-de Vries-Burgers equation. J. Comput. Phys., 23:393-403 (1977).
  • 9Coffey, M.W. On series expansions giving closed-form solutions of Korteweg-de Vries-like equations. SIAM J. Appl. Math., 50:1580-1592 (1990).
  • 10Dai, S.Q. Approximate analytical solutions for some strong nonlinear problems. Science in China Series A, 2:43-52 (1990).

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部