期刊文献+

对苯二酚增强纤维素/石墨烯电极的制备 被引量:3

Preparation of Hydroquinone Reinforced CNFs/RGO Electrodes
下载PDF
导出
摘要 目的以纳米纤维素气凝胶为骨架,对苯二酚为增强相,并加入还原氧化石墨烯,制备纳米纤维素/还原氧化石墨烯复合电极薄膜,将其应用于超级电容器。方法采用超声处理制备纳米纤维素/氧化石墨烯混合溶液;在高温高压的环境下,加入对苯二酚,采用水热合成法和冷冻干燥法制备纳米纤维素/还原氧化石墨烯气凝胶,并最终制成电极膜。结果在纳米纤维素/还原氧化石墨烯复合气凝胶中,石墨烯可将纳米纤维素均匀包裹,形成三维多孔网络结构;纳米纤维素/还原氧化石墨烯复合电极具有良好的电化学性能,在1mol/L的H2SO4溶液中,当电流扫描速率为1mA/cm^2时,超级电容器比面积电容高达1.621F/cm^2,且在2000次循环测试后,电容保留率为88.3%。结论以纳米纤维素为基体制备的纳米纤维素/还原氧化石墨复合电极具有良好的电化学性能,可以用作超级电容器电极。 The work aims to prepare the cellulose nanofibers/reduced graphene oxide (CNFs/RGO) composite electrode film with CNFs aerogel as the skeleton,hydroquinone as the reinforcing phase and added with reduced graphene oxide,and to apply the film to the supercapacitor.CNFs/RGO solution was prepared by ultrasonic treatment.CNFs/RGO aerogel was prepared by hydrothermal synthesis and freeze-drying with hydroquinone added at high temperature and pressure,and the electrode film was finally made.In the CNFs/RGO composite aerogel,the graphene could evenly wrap the CNFs to form a three-dimensional porous network structure.The CNFs/RGO composite electrode had excellent electrochemical performance.In 1 mol/L H2SO4 solution,when the current scan rate was 1 mA/cm^2,the specific area capacitance of the supercapacitor was as high as 1.621 F/cm^2,and the capacitance retention rate was 88.3% after 2,000 cycles of testing.The CNFs/RGO composite electrode prepared with cellulose nanofibers as the substrate has excellent electrochemical performance and can be used as the supercapacitor electrode.
作者 陈鹏 徐朝阳 CHEN Peng;XU Zhao-yang(Nanjing Forestry University,Nanjing 210037,China)
机构地区 南京林业大学
出处 《包装工程》 CAS 北大核心 2019年第15期92-97,共6页 Packaging Engineering
基金 国家自然科学基金(31770607)
关键词 气凝胶 纳米纤维素 石墨烯 对苯二酚 超级电容器 aerogel cellulose nanofibers grapheme hydroquinone supercapacitors
  • 相关文献

参考文献4

二级参考文献91

  • 1刘娟,章圣龙,张志坚.微晶纤维素在长货架期可可牛奶中的应用[J].中国乳品工业,2006,34(5):60-61. 被引量:10
  • 2薛彬.微纳米纤维素的制备及在纸张涂布中的应用[D].广州:华南理工大学,2012:1.78.
  • 3Service R F. New 'supercapacitor' promises to pack more electrical punch[J].{H}SCIENCE,2006,(5789):902-902.
  • 4Burke A. Ultracapacitors why,how,and where is the technology[J].{H}Journal of Power Sources,2000.37-50.
  • 5Conway B E. Electrochemical supercapacitors:Scientific fundamentals and technological applications[M].{H}New York:Kluwer Academic/Plenum Publishers,1999.
  • 6Srinivasan V,Weidner J W. Mathematical modeling of electrochemical capacitors[J].{H}Journal of the Electrochemical Society,1999,(05):1650-1658.doi:10.1149/1.1391821.
  • 7Shukla A K,Banerjee A,Ravikumar M K. Electrochemical capacitors:Technical challenges and prognosis for future markets[J].{H}Electrochimica Acta,2012.165-173.
  • 8Stoller M D,Park S,Zhu Y W. Graphene-Based ultracapacitors[J].{H}NANO LETTERS,2008,(10):3498-3502.
  • 9Zhang L,Zhou R,Zhao X. Graphene-Based materials as supercapacitor electrodes[J].{H}Journal of Materials Chemistry,2010,(29):5983-5992.
  • 10Liu C,Li F,Ma L P. Advanced materials for energy storage[J].{H}Advanced Materials,2010,(08):E28-E62.

共引文献70

同被引文献40

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部