期刊文献+

基于C4.5算法的大学阳光体育系统设计与实现 被引量:2

Sunlight Sports System Design and Implementation Based on Decision Tree
下载PDF
导出
摘要 随着中国大学生规模的不断扩大,大学生的数量迅速增加,因此与学生相关的人体测量数据也显著增加,包括学生出勤信息和身体健康测试数据,因此做好数据管理工作是当前高校体育教育发展的必然要求。随着计算机技术的快速发展,数据挖掘技术已被应用于许多领域。本文从阳光体育开始,利用数据挖掘的C4.5算法构建基于学生真实体质健康测试数据的决策树,生成规则和知识。通过对决策树的分析,可以了解影响学生身体健康的重要因素与指标之间的关系,以指导高校适时调整体育教育的管理手段,从而全面提高学生的身体素质。 With the continuous expansion of the scale of Chinese college students, the number of college students has rapidly increased, so the number of anthropometric data related to students increase significantly, including student attendance information and physical health test data. Therefore, a good job in data management is an inevitable requirement for the development of physical education in colleges and universities. With the rapid development of computer technology, data mining technology is applies in many fields. This article starts from Sunshine Sports, uses the C4.5 algorithm of data mining to build a decision tree based on the student’s real physique health test data, and generates rules and knowledge. Through the analysis of the decision tree, the relationship between important factors and indicators is abtained that affect students’ physical health, in order to guide decision-makers timely adjustment of management tools, so as to comprehensively improve the students’ physical fitness.
作者 孙莉 SUN Li(College of Physical Education,Xi'an Technological University,Xi'an 710001 China)
出处 《自动化技术与应用》 2019年第7期28-32,共5页 Techniques of Automation and Applications
基金 陕西省教育科学十三五规划2016年度课题立项:民办高校大学生休闲体育发展策略研究(编号SGH16H266)
关键词 数据挖掘 阳光体育系统 决策树 C4.5算法 data mining sunshine sports system decision tree computer technology
  • 相关文献

参考文献15

二级参考文献105

  • 1洪家荣,丁明峰,李星原,王丽薇.一种新的决策树归纳学习算法[J].计算机学报,1995,18(6):470-474. 被引量:92
  • 2BIN WANG,QINGGUO SHEN.Tide:An effective and practical design for hierarchical–structured P2P model[J].Computer Communications,2012,35(13):1601-1612.
  • 3ABBES H,Cérin C,JEMNI M.A decentralized and fault-tolerant desktop grid system for distributed applications[J].Concurrency and Computation:Practice and Experience,2010,22(3):261-277.
  • 4XU Yong,TONG Xin-hai.A New Pre-distorter Based on Neural Network for the Nonlinear HPA in Satellite Communications[J].International Conference on Communications and Intelligence Information Security,2010,168-171.
  • 5IBNKAHLA M.Neural network predistortion techniques for digital satellite communications:Proc IEEEICASSP'00,2004[C]//.[S.1.]:[s.n.],2004:3506-3509.
  • 6RAWAT M,RAWAT K,GHANNOUCHI F M.Adaptive Digital Predistortion of Wireless Power Amplifiers Transmitters Using Dynamic Real-Valued Focused Time-Delay Line Neural Networks[J].IEEE Transactions on Microwwave Theory And Techniques,2010,58(1):95-104.
  • 7夏国恩,金炜东.基于支持向量机的客户流失预测模型[J].系统工程理论与实践,2008,28(1):71-77. 被引量:71
  • 8DIETTERICH T G,LATHROP R H,LOZANO-PEREZ T.Solving the multiple-instance problem with axis-parallel rectangles[J].Artificial intelligence,1997,89(1/2):31-71.
  • 9HONG R,WANG M,GAO Y,et al.Image annotation by multiple-instance learning with discriminative feature mapping and selection[J].IEEE transactions on cybernetics,2014,44(5):669-680.
  • 10XIE Y,QU Y,LI C,et al.Online multiple instance gradient features selection for robust visual tracking[J].Pattern recognition letters,2012,33(9):1075-1082.

共引文献153

同被引文献35

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部