期刊文献+

外电阻值对3A-MFC产电和脱氮性能的影响 被引量:1

Effects of external resistance on the performance of three-anode-MFC:electricity generation and simultaneous nitrification and denitrification efficiency
下载PDF
导出
摘要 构建三阳极单阴极型微生物燃料电池(three-anode microbial fuel cells,3A-MFC),该间歇流反应器通过在阳极提供有机物,在阴极提供有机物、氨氮和氧气,在产电的同时实现生物阴极同步硝化反硝化脱氮。考察了外电阻值分别为1000Ω、500Ω、150Ω、50Ω时对3A-MFC产电及脱氮性能的影响,当外电阻值为150Ω时,产电量达到最大值为583C,阳极库仑效率达到最大值为1.70%,内阻达到最小值为200Ω,此时外电阻值与内阻值最接近,产电效果最好。外电阻值由1000Ω减小到150Ω时,总氮(TN)去除率从79.7%上升到最大值为84.1%,TN去除速率从7.5mg/(L·d)上升到最大值为13.1mg/(L·d)。在一定外电阻值范围内,伴随其值的减小,电子转移速率逐渐提高,同时电对微生物的刺激作用得到增强,能够实现最佳的TN去除效率和去除速率。 A novel three-anode microbial fuel cell(3 A-MFC) was used to produce electricity by providing organic at the anode and organic, ammonia and oxygen at the cathode. Simultaneous nitrification and denitrification were efficiently achieved at the biocathode. The effects of external resistance values of 1000Ω, 500Ω, 150Ω, and 50Ω on the electricity generation and denitrification performance of 3 A-MFC were investigated. The maximum output of 583 C could be achieved at the external resistance value of 150Ω, which was 2.0, 1.6, 2.5 times of those at the external resistance value of1000Ω, 500Ω and 50Ω, respectively. Meanwhile, the anode coulombic efficiency reached a maximum value of 1.70% and the internal resistance reached a minimum value of 200Ω. At this time, the external resistance value was the closest to the internal resistance value, and the power generation reached the peak. When the external resistance decreased from 1000Ω to 150Ω, the total nitrogen(TN) removal efficiency increased from 79.7% to a maximum value of 84.1%. The TN removal rate increased from7.5 mg/(L·d) to 13.1 mg/(L·d). With the external resistance value reducing, the electron transfer rate was improved, and the stimulation of the microorganisms was enhanced. So the optimal TN removal efficiency and rate were achieved.
作者 陆圆 顾霞 陆勇泽 黄珊 朱光灿 LU Yuan;GU Xia;LU Yongze;HUANG Shan;ZHU Guangcan(College of Energy and Environment,Southeast University,Nanjing 210018,Jiangsu,China)
出处 《化工进展》 EI CAS CSCD 北大核心 2019年第8期3910-3916,共7页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(51578132)
关键词 电化学 间歇式 生物过程 三阳极单阴极 微生物燃料电池 氨氮迁移 同步硝化反硝化 electrochemistry batchwise bioprocess three anodes microbial fuel cells ammonia nitrogen migration simultaneous nitrification and denitrification
  • 相关文献

参考文献2

二级参考文献14

  • 1詹亚力,张佩佩,闫光绪,王嘉麟,郭绍辉.微生物燃料电池及其应用研究进展[J].现代化工,2007,27(1):13-17. 被引量:20
  • 2梁鹏,范明志,曹效鑫,黄霞,王诚.微生物燃料电池表观内阻的构成和测量[J].环境科学,2007,28(8):1894-1898. 被引量:118
  • 3Kim B H, Kim H J, Hyun M S et al. Direct electrode reaction of Fe(Ⅲ)-reducing bacterium, Shewanella putrefaciens [J]. J Microbiol Biotechnol, 1999, 9(2): 127-131.
  • 4Jang J K, Pham T H, Chang I S et al. Construction and operation of a novel mediator- and membrane-less microbial fuel cell [J]. Process Biochemistry, 2004, 39(5): 1007-1012.
  • 5Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [J]. Environ Sci Technol, 2004, 38(14): 4040-4046.
  • 6Ghangrekar M M, Asolekar S R, Joshi S G. Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation [J]. Water Research, 2005, 39(5): 1123-1133.
  • 7State Environmental Protect Administration of China(国家环保护局). Monitoring and Analyzing Method for Water and Waste Water(水和废水监测分析方法)[M].Beijing(北京):China Environmental Science Press(中国环境科学出版社),2002.
  • 8JIANG Zhan-peng(蒋展鹏).Principle of Environmental Engineering(环境工程学)[M].Beijing(北京):Higher Education Press(高等教育出版社),2005.
  • 9郑峣,刘志华,李小明,贾斌,方丽.剩余污泥生物燃料电池输出功率密度的影响因素[J].中国环境科学,2010,30(1):64-68. 被引量:28
  • 10罗勇,张仁铎,李婕,李明臣,张翠萍,刘广立.以吲哚为燃料的微生物燃料电池降解和产电特性[J].中国环境科学,2010,30(6):770-774. 被引量:16

共引文献33

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部