期刊文献+

基于语义分割的车辆行驶车道定位方法

Vehicle driving lane location method based on semantic segmentation
下载PDF
导出
摘要 提出一种基于语义分割的车辆行驶车道定位方法.首先采用“编码器-解码器”网络架构实现多车道语义分割,通过最大池化计算的池化索引来进行非线性上采样,消除上采样的学习需要;然后结合目标检测YOLO v2算法,判断行驶车辆所属车道的位置,从而进行车道定位.利用卡尔斯鲁厄理工学院和丰田美国技术研究院公布的数据集(KITTI)中城市道路(UM)的数据制作训练和测试数据库,并将其公开发布.该算法可以实现端到端训练,网络结构简单、速度快、内存需求低,每帧图像的执行速度在60 ms以内. A vehicle driving lane positioning method was proposed based on semantic segmentation.Firstly,an“encoder-decoder”network architecture was designed to implement multi-lane semantic segmentation.The decoder uses the pooled index of the largest pooled calculation in the corresponding encoder to perform nonlinear upsampling,eliminating the need for upsampling learning.Then,combine with the target detection YOLO v2 algorithm,and determine the location of the lane to which the vehicle belongs,further realize lane positioning.This project produced a train and test database using urban marked(UM)data from the Karlsruhe Institute of Technology and Toyota dataset(KITTI)and published it.The lane detection algorithm is fast and simple,running at 60 ms each frame,which can be trained end-to-end.
作者 裴晨皓 黄立勤 PEI Chenhao;HUANG Liqin(College of Physics and Information Engineering,Fuzhou University,Fuzhou,Fujian 350108,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2019年第4期453-459,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省重大重点科技基金资助项目(2017H6009,2018H0018) 福建省中青年教师教育科研项目(JA15626) 赛尔网络创新项目(NGII20160208,NGII20170201)
关键词 车辆辅助驾驶 车道语义分割 卷积神经网络 车道定位 vehicle assisted driving lane semantic segmentation convolutional neural network lane orientation
  • 相关文献

参考文献3

二级参考文献23

  • 1肖良,戴斌,吴涛,方宇强.基于字典学习与稀疏表示的非结构化道路分割方法[J].吉林大学学报(工学版),2013,43(S1):384-388. 被引量:3
  • 2余天洪,王荣本,顾柏园,郭烈.基于机器视觉的智能车辆前方道路边界及车道标识识别方法综述[J].公路交通科技,2006,23(1):139-142. 被引量:22
  • 3李庆忠,石巍,褚东升.一种融合聚类与区域生长的彩色图像分割方法[J].计算机工程与应用,2006,42(14):76-78. 被引量:8
  • 4Rudolf Gregor, M Lutzeler, M Pellkofer. EMS-Vision: A perceptual system for autonomous vehicles [ J ]. IEEE Trausactos on Intelligent Transportation ,2001 :.
  • 5Yinghua He, Hong Wang, and Bo Zhang. Color-based road detection in urban traffic scenes [ J ]. IEEE Transaction on Intelligent Transportation System :.
  • 6Tsai L W,Hsieh J W,Chuang C H.Lane detection using directional random walks[C]//Proc of IEEE Intelligent Vehicles Symposium.Piscataway:IEEE Press,2008:303-306.
  • 7Li Qing,Zheng Nanning,Chen Hong.A prototype autonomous vehicle and its algorithms for lane detection[J].IEEE Trans on Intelligent Transportation Systems,2004,5(4):300-308.
  • 8Wang Yue,Teoh E K,Shen Dinggang.Lane detection and tracking using B-snake[J].Image Vision Computing,2004,22(4):269-280.
  • 9Wang Jian,Ji Zhong,Su Yuting.Unstructured road detection using hybrid features[C]//Proc of International Conference on Machine Learning and Cybernetics.Piscataway:IEEE Press,2009:482-486.
  • 10Coates A,Lee H,Ng A Y.An analysis of single-layer networks in unsupervised feature learning[C]//Proc of the 14th International Conference on Artificial Intelligence and Statistics.Fort Lauderdale:JMLR,2011:215-223.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部