期刊文献+

基于属性熵的隐私匿名信息保护研究与应用

Privacy Preserving Anonymous Information Protection Based on Attribute Entropy
下载PDF
导出
摘要 针对当前隐私匿名保护中存在的只对准标识符属性与敏感属性进行保护,而未考虑两者之间的平衡性问题,结合当前的智能算法,提出了一种基于权重属性熵的匿名分类方法。首先提出了方法的思路,然后引入权重属性熵的方式,对元素损失度量模型和分类匿名数据保护模型各自所占的权重进行计算,进行找到损失度量和匿名保护之间的平衡点。最后通过试验验证的方式,验证了本文提出的算法虽然执行时间多,但是可实现数据匿名保护和精度之间的平衡,具有一定的可行性。 In order to balance the two attributes, an anonymous classification method is proposed based on weighted attribute entropy. The method tries to solve the problem existed in the current methods that aim at protecting only the attributes of identifiers or sensitive attributes. Firstly, the idea of the method is put forward. Then, the weights of element loss measurement model and classified anonymous data protection model are calculated by introducing weight attribute entropy, and the balance point between loss measurement and anonymous protection is found. Finally, the experimental verification shows that the proposed algorithm can achieve a balance between data anonymity protection and accuracy, although it takes a lot of time to execute, it has a certain feasibility.
作者 贾步忠 JIA Buzhong(Second Department of Accounting,Shanxi Vocational and Technical College of Finance and Economics,Xianyang 712000)
出处 《微型电脑应用》 2019年第7期111-114,共4页 Microcomputer Applications
关键词 匿名保护 标识 损失度量 权重 Anonymous protection Identification Loss measurement Weights
  • 相关文献

参考文献15

二级参考文献237

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 3朱方霞,陈华友.确定区间数决策矩阵属性权重的方法——熵值法[J].安徽大学学报(自然科学版),2006,30(5):4-6. 被引量:71
  • 4刘业政,徐德鹏,姜元春.多属性群决策中权重自适应调整的方法[J].系统工程与电子技术,2007,29(1):45-48. 被引量:49
  • 5彭京,唐常杰,程温泉,石葆梅,乔少杰.一种基于层次距离计算的聚类算法[J].计算机学报,2007,30(5):786-795. 被引量:11
  • 6Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract) [A ]. Proc of the 17th ACM-SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems[C]. Seattle, WA, USA: IEEE press, 1998.188.
  • 7Samarafi P. Protecting respondents' identities in microdata release[J]. IEEE Transactions on Knowledge and Data Engineering,2001,13(6) : 1010 - 1027.
  • 8Sweeney L. K-anonymity: a model for protecting privacy[J]. International Journal on Uncertainty, Fuzziness and Knowledge- Based Systems,2002,10(5) :557 - 570.
  • 9Sweeney L. Achieving k-anonymity privacy protection using generalization and suppression[ J]. International Jounlal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002, 10 (5) :571 - 588.
  • 10Iyengar V. Transforming data to satisfy privacy constraints[A]. Proc of the 12th ACM SIGKDD Conference [C]. Edmonton, Alberta, Canada: ACM Press, 2002.279 - 288.

共引文献227

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部