期刊文献+

鼾症中OSAHS的预测模型及危险因素分析 被引量:3

Prediction model and risk factors of OSAHS in snoring patients
原文传递
导出
摘要 目的分析单纯鼾症与阻塞性睡眠呼吸暂停低通气综合征(OSAHS)患者的危险因素,建立OSAHS预测模型,探寻临床上能简单地用于判断病情严重程度的指标。方法选取在自贡市第四人民医院睡眠监测室行整夜多导睡眠监测的592例患者作为研究对象,其中单纯鼾症组178例,OSAHS组414例。采用问卷调查及量表评分方式,记录患者的年龄、性别、身高、体质量、体质量指数(BMI)、颈围、腰围、打鼾程度、Epworth评分等指标。通过分析单纯鼾症与OSAHS患者临床资料的差异,寻找出OSAHS的危险因素;采用相关分析方法分析危险因素与睡眠呼吸暂停低通气指数(AHI)和最低血氧饱和度(SpO2)的相关关系;采用多元逐步回归分析建立OSAHS病情严重程度的预测模型。结果数据分析得出性别、年龄、BMI、颈围、腰围、打鼾程度、Epworth评分是OSAHS的危险因素。相关分析显示上述危险因素与AHI和最低SpO2 显著相关。多元逐步回归分析得出的预测模型为:AHI=2. 338×BMI+9. 378×打鼾程度+1. 42×Epworth评分+1. 235×颈围-103. 415;最低SpO2=-1. 309×BMI-0. 631×Epworth评分-3. 63×打鼾程度+3. 432×性别+118. 504 (性别:男性取值1,女性取值2)。结论 BMI、颈围、性别、打鼾程度和Epworth评分为 OSAHS的独立危险因素,临床上可将OSAHS的危险因素代入预测模型初步估算疾病的严重程度,有助于早期诊断和治疗。 Objective This study was designed to analyze risk factors in patients with snoring and obstructive sleep apnea hypopnea syndrome (OSAHS) ,to establish OSAHS prediction model , and to find indicators that can be used to determine the severity of the disease simply . Methods There were 592 patients who underwent polysomnography in the Sleep Monitoring Room of Zigong Fourth People′s Hospital were selected as subjects .Among them ,there were 178 cases in snoring group and 414 cases in OSAHS group .Age ,sex ,height ,weight ,body mass index ( BMI) ,neck circumference , waist circumference , snoring degree and Epworth score were recorded by questionnaire and scale . The difference of clinical data between snoring patients and OSAHS patients was analyzed ,and found out the risk factors for OSAHS .The correlation analysis was used to analyze the correlation between the risk factors and the apnea hypopnea index (AHI) and lowest pulse oxygen saturation (SpO2 ) .The prediction model of the severity of OSAHS was established by means of multiple stepwise regression analysis .Results The results showed that gender ,age ,BMI , neck circumference ,waist circumference ,snoring degree and Epworth score were risk factors for OSAHS .Correlation analysis showed that these risk factors were significantly correlated with the AHI and lowest SpO2 .The prediction model obtained by multiple stepwise regression analysis were:AHI = 2 .338 × BMI + 9 .378 × snoring degree + 1 .42 × Epworth score + 1 .235 × neck circumference -103 .415;lowest SpO2 = - 1 .309 × BMI -0 .631 × Epworth score -3 .63 × snoring degree + 3 .432 × sex + 118 .504 ( male for 1 ,female for 2) .Conclusions BMI ,neck circumference ,sex ,snoring degree and Epworth score are independent risk factors of OSAHS .The risk factors of OSAHS can be introduced into the prediction model to estimate the severity of the disease ,which is helpful for early diagnosis and treatment .
作者 孙楷 聂洪玉 徐东兰 刘泳 马升军 唐亮 Sun Kai;Nie Hongyu;Xu Donglan;Liu Yong;Ma Shengjun;Tang Liang(Department of Respiratory and Critical Care Medicine, Zigong Fourth People's Hospital, Zigong 643000, China)
出处 《国际呼吸杂志》 2019年第14期1067-1072,共6页 International Journal of Respiration
基金 自贡市2013年重点科技计划(2013ZC22).
关键词 打鼾 危险因素 睡眠呼吸暂停 阻塞性 预测模型 Snoring Risk factors Sleep apnea, obstructive Prediction model
  • 相关文献

参考文献7

二级参考文献66

共引文献1905

同被引文献26

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部