摘要
As next-generation sequencing (NGS) technology has become widely used to identify genetic causal variants for various diseases and traits,a number of packages for checking NGS data quality have sprung up in public domains. In addition to the quality of sequencing data,sample quality issues,such as gender mismatch,abnormal inbreeding coefficient,cryptic relatedness,and population outliers,can also have fundamental impact on downstream analysis. However,there is a lack of tools specialized in identifying problematic samples from NGS data,often due to the limitation of sample size and variant counts. We developed SeqSQC,a Bioconductor package,to automate and accelerate sample cleaning in NGS data of any scale. SeqSQC is designed for efficient data storage and access,and equipped with interactive plots for intuitive data visualization to expedite the identification of problematic samples. SeqSQC is available at http://bioconductor. org/packages/SeqSQC.
As next-generation sequencing(NGS) technology has become widely used to identify genetic causal variants for various diseases and traits, a number of packages for checking NGS data quality have sprung up in public domains. In addition to the quality of sequencing data, sample quality issues, such as gender mismatch, abnormal inbreeding coefficient, cryptic relatedness, and population outliers, can also have fundamental impact on downstream analysis. However, there is a lack of tools specialized in identifying problematic samples from NGS data, often due to the limitation of sample size and variant counts. We developed SeqSQC, a Bioconductor package, to automate and accelerate sample cleaning in NGS data of any scale. SeqSQC is designed for efficient data storage and access, and equipped with interactive plots for intuitive data visualization to expedite the identification of problematic samples. SeqSQC is available at http://bioconductor.org/packages/SeqSQC.
基金
supported by the National Cancer Institute (NCI), the National Institutes of Health (NIH), USA (Grant Nos. CA162218 awarded to SL and HZ, CA105274 awarded to LHK, and CA195565 awarded to LHK and CBA)
supported by the NCI (Grant No. P30CA016056 awarded to Roswell Park Comprehensive Cancer Center involving the use of DBBR, Genomic, Bioinformatics, and Biostatistics Shared Resources)
supported by the Breast Cancer Research Foundation, USA