期刊文献+

基于数据驱动的高炉煤气复合预测模型 被引量:12

Composite prediction model of blast furnace gas based on data driven
原文传递
导出
摘要 对钢铁企业高炉煤气系统科学准确的预测,可以为煤气的合理调度提供依据,对企业提高能源利用效率、减少煤气放散和环境污染有着非常重要的意义。针对钢铁企业高炉煤气系统设备工况复杂、煤气量波动频繁、难以准确预测的问题,依据小波分析方法、BP神经网络、最小二乘支持向量机的性质建立了基于数据驱动的高炉煤气的复合预测模型。该模型综合考虑高炉煤气系统生产计划和检修计划,对高炉煤气系统的产耗用户在不同工况下分别建立训练数据集,利用多组模型参数预测高炉煤气产生量、消耗量和缓冲量。利用某大型钢铁企业实际数据进行测试,该模型能够结合设备的实际生产工况变化,实现煤气的准确预测。结果表明,该模型平均绝对百分比误差小于4.95%,对变工况煤气系统有较好的预测效果。 The scientific and accurate prediction of the blast furnace gas system in iron and steel company can provide a basis for the reasonable dispatching of the coal gas,which was very important for the enterprise to improve the energy efficiency,reduced the gas discharge and the environmental pollution.The equipment conditions of blast furnace gas system in iron and steel works were complex,and the fluctuation of gas quantity was frequent,so it was difficult to predict accurately.In terms of these issues,a data-driven compound prediction model of blast furnace gas was built on the basis of wavelet analysis,BP neural network and least squares support vector machines.The model taked the production plan and maintenance schedule of the blast furnace gas system into account,sets up training data sets for the production and consumption users of blast furnace gas system under different working conditions and uses multi group model parameters to predict the production,consumption and buffering capacity of blast furnace gas.Tested by the actual data of a large iron and steel enterprise,the model combined with the actual production equipment condition and the accurate prediction of gas can accurately predict the gas.The results showed that the average absolute percentage error of the model was less than 4.95%,which had a good prediction effect on the variable working gas system.
作者 徐化岩 马家琳 XU Hua-yan;MA Jia-lin(State Key Laboratory of Hybrid Process Industry Automation Systems and Equipment Technology,Automation Research and Design Institute of Metallurgical Industry, Beijing 100072, China;State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, Liaoning, China)
出处 《中国冶金》 CAS 北大核心 2019年第7期56-60,共5页 China Metallurgy
基金 国家重点研发计划资助项目(2017YFB0304005)
关键词 高炉煤气系统 小波分析 BP神经网络 最小二乘支持向量机 多工况 blast furnace gas system wavelet analysis BP neural network least squares support vector machines multi working conditions
  • 相关文献

参考文献10

二级参考文献88

共引文献171

同被引文献117

引证文献12

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部