期刊文献+

一锅法制备三元ZnCdTe/ZnS量子点及其在照明中应用研究 被引量:1

Fabrication of Ternary ZnCdTe/ZnS Quantum Dots by One-Pot Method and Its Application in Lighting
原文传递
导出
摘要 Cd系量子点由于其量子产率高,光谱调谐方便,成为世界各国科学家研究的热点;目前已经在生物荧光,传感,太阳能电池等领域有了很大的进展,但是Cd元素的毒性一直是限制其大规模应用的瓶颈。目前,降低含Cd量子点毒性的方法主要有两种:包覆保护层和采用合金化。二元CdTe量子点的制备技术以及包覆技术已较为成熟,但是三元量子点的研究相对比较少,目前的制备技术大多比较复杂,成本较高,不适合规模化生产。本文采用溶剂热法,以巯基乙酸(TGA)作为稳定剂,通过包覆与合金化相结合的手段,成功在高温下制备了量子产率高,性能稳定,发射波长能够覆盖可见光区域的水溶性ZnCdTe量子点。 Cd-based quantum dots(QDs) have attracted extensive attention for a long time due to high photoluminescence quantum yield(PLQY) and tunable spectrum. Currently, much progress has been made in the fields of bioluminescence, sensing and solar cells, but the toxicity of Cd has been the bottleneck restricting further large-scale application. There are two main methods to reduce the toxicity of Cd-based QDs including coating and alloying. The preparation and coating technology of binary CdTe QDs are relatively mature, but the research of ternary CdTe QDs still needs further investigation. The present synthetic process is complex and costly, which is not suitable for large-scale production. In this work, we successfully prepared water-soluble ZnCdTe QDs at high temperature by solvothermal method, using thioglycolic acid(TGA) as a stabilizer and combining coating with alloying. The as-prepared ZnCdTe QDs exhibit high PLQY, excellent stability and emission wavelength covering the visible region.
作者 刘久诚 魏娴 魏畅 梅时良 谭振坤 张万路 UU Jiucheng;WEI Xian;WEI Chang;MEI Shiliang;TAN Zhenkun;ZHANG Wanlu(Department of Light Source and Illumination Engineering,School of Information Science and Technology,Fudan University,Shanghai 200433,China;Henan Educational Press,Zhengzhou 450044,China)
出处 《中国照明电器》 2019年第6期1-7,共7页 China Light & Lighting
关键词 三元量子点 合金 包覆 照明 ternary quantum dots alloy coating lighting
  • 相关文献

参考文献2

二级参考文献132

  • 1Cao X. D., Li C. M., Bao H. F., Bao Q. L., Dong H., Chem. Mater, 2007, 19, 3773.
  • 2Peng H., Zhang L., Soeller C., Sejdic J. T., J. Lumin., 2007, 127, 721.
  • 3Li J., Wang L., Zhao K., Li D., Li J., Bai Y., Li T., Coll. Surf A, 2005, 257, 329.
  • 4Ma Q., Yu W., Su X., Talanta, 2010, 82, 51.
  • 5Datta J., Jana A., Bhattacharya C., Bandyopadhyay S., Electr. Acta, 2009, 54, 5470.
  • 6Zhong H. Z., Zhou Y., Yang Y., Yang C. H., Li Y. F., J Phys. Chem., C, 2007,111,6538.
  • 7Li X. Z., Wang L., Zhou C., Guan T. T., Li J., Zhang Y. H., Clin. Chim. Aeta, 200?', 378, 168.
  • 8Lin C. A. J., Liedl T., Sperling R. A., Fernandez-Arguelles M. T., Costa-Fernandez J. M., Pereiro R., Sanz-Medel A., Chang W. H., Parak W. G. J., J. Mater. Chem., 2007, 17, 1343.
  • 9Kjlman T. H. M., Peng H., Soeller C., Travas-Sejdic J., Analyst, 2010, 135, 488.
  • 10Kanwal S., Traore Z., Su X., Coll. Surf B, 2010, 81, 49.

共引文献3

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部