期刊文献+

协同过滤和粒子群算法在饮食推荐中的应用 被引量:6

APPLICATION OF COLLABORATIVE FILTERING AND PARTICLE SWARM OPTIMIZATION IN DIETARY RECOMMENDATION
下载PDF
导出
摘要 目前饮食健康越来越受到关注,而传统饮食推荐只单方面考虑饮食偏好或营养均衡需求。综合考虑两个方面,构建个性化饮食推荐模型。利用基于用户的协同过滤算法进行饮食推荐,解决饮食偏好问题;利用多目标粒子群优化算法对推荐食谱进行营养调优,解决营养均衡问题。实验结果表明,该模型在推荐和调优上效果显著,有效解决了个性化饮食推荐问题。 At present,healthy diet is getting more and more attention.Traditional diet recommendations only consider the need of diet preference or nutrition balance.To solve the diet recommendation problem of diet preference and nutrition balance,we constructed a personalized dietary recommendation model.User-based collaborative filtering algorithm was used to recommend the diet so as to solve the diet preference.The multi-objective particle swarm optimization was adopted to adjust nutrition well so as to solve the balance of nutrition.The experimental results show that the model has a significant effect on the recommendation and adjustment,which effectively solves the personalized diet recommendation problem.
作者 何金超 罗芳 袁知才 黄慧中 He Jinchao;Luo Fang;Yuan Zhicai;Huang Huizhong(School of Computer Science and Technology,Wuhan University of Technology,Wuhan 430061,Hubei,China)
出处 《计算机应用与软件》 北大核心 2019年第8期36-40,59,共6页 Computer Applications and Software
基金 国家大学生创新创业训练计划项目(201810497226)
关键词 协同过滤 粒子群 饮食偏好 营养均衡 个性化推荐 Collaborative filtering Particle swarm Diet preference Nutrition balance Personalized recommendation
  • 相关文献

参考文献6

二级参考文献32

  • 1王高平,王永骥,王浩.模糊多目标遗传算法及其在营养决策中的应用[J].河南工业大学学报(自然科学版),2006,27(5):62-65. 被引量:2
  • 2Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II [ J ]. IEEE Trans on Evolutionary Computation, 2002, 6(2):182-197,.
  • 3Coello Coello C A, Pulido G T, Lechuga M S. Handing multiple objectives with particle swarm optimization[ J]. IEEE Trans on Evolutionary Computation, 2004, 8 ( 3 ) : 256- 279.
  • 4Shi Y, Eberhart R. A Modified particle swarm optimizer [ C ] // IEEE International Conference on Evolutionary Computation. Anchorage: IEEE Press, 1998 : 69-73.
  • 5Chih-Fong Tsai,Chihli Hung.Cluster ensembles in collaborative filtering recommendation[J].Applied Soft Computing Journal.2011(4)
  • 6Xiaoyuan Su,Taghi M. Khoshgoftaar,Jun Hong.A Survey of Collaborative Filtering Techniques[J].Advances in Artificial Intelligence.2009
  • 7Slobodan Vucetic,Zoran Obradovic.Collaborative Filtering Using a Regression-Based Approach[J].Knowledge and Information Systems.2005(1)
  • 8Mukund Deshpande,George Karypis.Item-based top- N recommendation algorithms[J].ACM Transactions on Information Systems (TOIS).2004(1)
  • 9Thomas Hofmann.Latent semantic models for collaborative filtering[J].ACM Transactions on Information Systems (TOIS).2004(1)
  • 10吴湖,王永吉,王哲,王秀利,杜栓柱.两阶段联合聚类协同过滤算法[J].软件学报,2010,21(5):1042-1054. 被引量:83

共引文献366

同被引文献48

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部