期刊文献+

基于智能手机用户行为习惯的App使用预测算法研究 被引量:2

PREDICTION ALGORITHM OF APP USAGE BASED ON SMARTPHONE USER BEHAVIOR HABITS
下载PDF
导出
摘要 互联网的发展不仅推动了智能手机的普及,而且涌现了大量的手机App。大量被安装在手机中的应用程序不仅增加了用户寻找App的时间和难度,而且占用了手机大量的内存空间,致使手机卡顿,严重影响了用户体验。利用智能手机用户使用App的行为习惯特征,预测用户将要使用的App,并将其应用到智能手机中用以预加载App和智能清理手机内存是解决上述问题的方法之一。在深入了解PrefixSpan算法和Bayesian网络算法的前提下,考虑智能手机用户对每个App的喜爱程度,将其加入到PrefixSpan算法的剪枝步骤中;采用贝叶斯网络算法整合智能手机用户的App使用记录和App使用时长等特征,提出一套新的预测用户下一个将要使用的App的算法——WAPA(Weighted App Prediction Algorithm)。实验证明,该算法预测准确率最高可达86.3%,较其他算法可提高大约4%。 The development of the Internet not only promotes the popularity of smart phone,but also emerges a large of mobile App.A large number of applications installed in the mobile phone increase the time and difficulty for the user to search for App,and occupy a large number of mobile memory space,which leads to the mobile phone lagging.This phenomenon has seriously influenced the user experience.It is one of the ways to solve the above problem by using the behavior and habit characteristics of App for smart phone users to predict the App that the user will use,and apply it to the smart phone to preload the App and optimize the memory of the mobile phone.Under the premise of understanding the PrefixSpan algorithm and the Bayesian network algorithm.We considered the preference of smartphone users for each App,and added it to the pruning step of the PrefixSpan algorithm.Then,we integrated user s App usage record and the time for using App with Bayesian network algorithm.Therefore,a new set of App algorithm WAPA(Weighted-App-Prediction-Algorithm) was proposed.Experiments show that the algorithm has a prediction accuracy of up to 86.3%,which is about 4% higher than other algorithms.
作者 王克强 王保群 张雨帅 王纪超 Wang Keqiang;Wang Baoqun;Zhang Yushuai;Wang Jichao(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Key Lab of Mobile Communications Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机应用与软件》 北大核心 2019年第8期82-86,195,共6页 Computer Applications and Software
基金 长江学者和创新团队发展计划项目(IRT_16R72)
关键词 APP 用户行为习惯 贝叶斯网络 PREFIXSPAN算法 序列模式 App User behaviour habits Bayesian network PrefixSpan algorithm Sequence pattern
  • 相关文献

参考文献1

二级参考文献4

  • 1Pitkow J.and Pirolli P.(1999),Mining Longest Repeating Subsequences to Predict WWW Surfing.Proceedings of the 1999 USENIX Annual Technical Conference.
  • 2Stuart Schechter,Murali Krishnan,and Michael D.Smith.Using path profiles to predict HTTP requests.Computer Networks and ISDN Systems,30:457~467,1998.Proceedings of the Seventh International World Wide Web Conference.
  • 3David W.Albrecht,Ingrid Zukerman,and Ann E.Nicholson.Pre-sending documents on the WWW:A comparative study.In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence(IJCAI-99),volume 2,pp.1274~1279,Stockholm,Sweden,1999.Morgan Kaufmann.
  • 4Huberman,B.A,P.L.T.Pirolli,J.E.Pitkow,and R.M.Lukose(1998),Strong Regularities in World Wide Web Surfing,Science 280,5360,95~97.

共引文献7

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部