期刊文献+

基于CNN的加密C&C通信流量识别方法 被引量:16

CNN-based Encrypted C&C Communication Traffic Identification Method
下载PDF
导出
摘要 为实现恶意软件加密C& C通信流量的准确识别,分析正常网页浏览访问和C& C通信的https通信过程,发现恶意软件C& C通信的服务器独立性特征,提出https通信序列建模方法。针对加密通信的行为特点,利用密文十六进制字符的向量表示方法完成加密流量的向量化表达,并采用多窗口卷积神经网络提取加密C& C通信模式的特征,实现加密C& C通信数据流的识别与分类。实验结果表明,该方法识别恶意软件加密C& C流量的准确率高达91.07 %。 In order to achieve accurate identification of malware encrypted C& C communication traffic,this paper analyzes the https communication process of normal Webpage browsing access and C& C communication,discovers the server independence feature of malware C& C communication and proposes a sequence modeling method of https communication.Based on the behaviour characteristics of encrypted communication,a vector representation method for hexadecimal characters of ciphertext is used to implement a vectorized expression of encrypted traffic.Multi-window Convolutional Neural Network(CNN) is used to extract the pattern characteristics of encrypted C& C communication and realize the identification and classification of encrypted C& C communication data traffic.Experimental results show that the accuracy of identifying the encrypted C& C communication traffic of malware is 91.07 %.
作者 程华 谢金鑫 陈立皇 CHENG Hua;XIE Jinxin;CHEN Lihuang(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第8期31-34,41,共5页 Computer Engineering
基金 赛尔网络下一代互联网技术创新项目(NGII20160606)
关键词 加密流量 C&C通信 https通信 卷积神经网络 密文字符表达 encrypted traffic C& C communication https communication Convolutional Neural Network(CNN) ciphertext character expression
  • 相关文献

参考文献1

二级参考文献1

共引文献3

同被引文献76

引证文献16

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部