摘要
综合考虑任务粒度与解耦水平,提出一种改进的软件众包任务分解算法。基于任务网络内的依赖关系计算任务粒度,根据各子任务在设计结构矩阵中的分布情况衡量解耦水平,并通过动态解耦进行软件众包任务分解。实验结果表明,与基于独立水平和传播成本的任务分解算法相比,该算法风险判定值和缺陷密度分别提升 0.244 0、 0.362 6、0.014 6、0.319 4,可保证软件众包任务完成质量。
Considering the task granularity and Decoupling Level(DL),an improved software crowdsourcing task decomposition algorithm is proposed.The task granularity is calculated based on the dependency relationship in the task network.The decoupling level is measured according to the distribution of each subtask in the Design Structure Matrix(DSM),and the software crowdsourcing task decomposition is performed by dynamic decoupling.Experimental results show that compared with the task decomposition algorithm based on Independent Level(IL) and Propagation Cost(PC),the risk judgment value and defect density of the algorithm are increased by 0.244 0,0.362 6,0.014 6 and 0.319 4 respectively,which can ensure the completion quality of software crowdsourcing tasks.
作者
王晨旭
王晓晨
余敦辉
吴珊
WANG Chenxu;WANG Xiaochen;YU Dunhui;WU Shan(College of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China;Hubei Province Engineering Technology Research Center for Education Informationization,Wuhan 430062,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2019年第8期120-124,134,共6页
Computer Engineering
基金
国家自然科学基金(61572371,61832014)
湖北省技术创新专项(2018ACA13)
关键词
软件众包
任务分解
任务粒度
动态解耦
设计结构矩阵
software crowdsourcing
task decomposition
task granularity
dynamic decoupling
Design Structure Matrix(DSM)