期刊文献+

基于栈式降噪自动编码器的动态混合推荐算法 被引量:2

Dynamic Hybrid Recommendation Algorithm Based on Stacked Denoising Autoencoder
下载PDF
导出
摘要 传统协同过滤算法仅依靠用户评分数据的低维向量方法,存在推荐结果精确度低以及冷启动问题。为此,提出一种新的动态混合推荐算法,将栈式降噪自动编码器融入到基于用户的协同过滤中,学习用户的深层次特征,并与基于用户项目属性偏好的相似度融合。在预测生成阶段,设置时间衰减项,动态预测访问概率,及时更新用户兴趣变化,从而提高推荐质量。在MovieLens数据集上的实验结果表明,与UB-CF、AE和SDAE-IA算法相比,该算法推荐性能明显提高。 Traditional collaborative filtering algorithms only rely on low-dimensional vector method of user rating data,which results in low accuracy of recommendation results and cold-start problems.Therefore,this paper proposes a new dynamic hybrid recommendation algorithm,which integrates the stacked denoising Autoencoder(AE) into the user-based collaborative filtering to learn users’deep features,and is integrated with the similarity based on user item attribute preference.In the prediction generation stage,the time attenuation item is set to dynamically predict the accessing probability and update the changes of user interest in time,so as to improve the quality of recommendation.Experimental results on the MovieLens dataset show that the recommendation performance of the algorithm is significantly improved compared with the UB-CF,AE,and SDAE-IA algorithms.
作者 李梦梦 夏阳 李心茹 徐婷 魏思政 LI Mengmeng;XIA Yang;LI Xinru;XU Ting;WEI Sizheng(School of Computer Science and Technology,China University of Mining and Technology,Xuzhou,Jiangsu 221106,China;School of Economics,Xuzhou University of Technology,Xuzhou,Jiangsu 221008,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第8期184-189,共6页 Computer Engineering
基金 国家自然科学基金(51874300) 国家自然科学基金委员会-山西省人民政府煤基低碳联合基金(U1510115)
关键词 协同过滤 自动编码器 项目属性 相似度 时间衰减 collaborative filtering Autoencoder(AE) item attribute similarity time attenuation
  • 相关文献

参考文献8

二级参考文献138

  • 1贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:47
  • 2陈刚,刘发升.基于BP神经网络的数据挖掘方法[J].计算机与现代化,2006(10):20-22. 被引量:14
  • 3Ricci F, Rokach L, Shapira B, et al. Recommender Systems Handboo[M]. Berlin: Springer, 2011:145-186.
  • 4Koren Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]//Proe of the 14th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2008 : 426-434 Mobasher B, Burke R, Sandvig J. Model-based collaborative filtering as a defense against profile injection.
  • 5attacks [C] // Proc of the 21st National Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2006:1388-1393.
  • 6Sandvig J, Mobasher B, Burke R. Robustness of collaborative recommendation based on association rule mining [C] //Proc of the 2007 ACM Conf on Recommender Systems. New York: ACM, 2007:105-112.
  • 7Mehta B, Hofmann T, Nejdl W. Robust collaborative filtering [C]//Proc of the 2007 ACM Conf on Recommender Systems. New York: ACM, 2007:49-56.
  • 8Pitsilis G, Marshall L. A model of trust derivation from evidence for use in recommendation systems, CS-TR-874 [R]. Newcastle, UK: University of Newcastle Upon Tyne, 2004.
  • 9Pitsilis G, Marshall L. Modeling trust for recommender systems using similarity metrics [C] //Proc of IFIPTM 2008. Berlin: Springer, 20081 103-118.
  • 10O'Donovan J, Smyth B. Trust in recommender systems [C]//Proe of the 10th lnt Conf on Intelligent User Interfaces. New York: ACM, 2005:167-174.

共引文献613

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部