期刊文献+

Microstructure of NiSO4 Solution: A Combined DFT and EXAFS Study

Microstructure of NiSO4 Solution: A Combined DFT and EXAFS Study
下载PDF
导出
摘要 The microhydration structure of nickel sulfate aqueous solution has been determined via density functional theory (DFT) calculation and extended X-ray absorption fine structure (EXAFS) spectroscopy.The geometric optimization and energy calculation of nickel sulfate hydrated clusters of the molecular formula [NiSO4(H2O)n ]^0 (n=1-12) were determined via DFT using the B3LYP method.Several possible initial structures were considered for clusters of each size to locate the equilibrium geometry.Based on the DFT calculation,the favorable structure of Ni^2+ includes the six-coordinated form of [NiSO4(H2O)n ]^0 clusters.The results of hydration energy calculation suggest that the six-coordinated contact ion pair (CIP) is the stable configuration for small hydration clusters (n≤5),while the solvent-shared ion pair (SSIP) represents the favorable structure for medium hydration clusters (6≤n≤10).The solvent is separated by x water molecules (xSIP,x≥2 is the number of water molecule between Ni^2+ and SO4^2-) in larger hydration clusters (n≥11).The EXAFS analysis of the NiSO 4 aqueous solutions and NiSO4 ·6H2O solid established that Ni^2+ was surrounded by six water molecules tightly forming an octahedral structure in the first hydration shell,and no CIP was found from 0.70 mol/L to 2.22 mol/L (near saturation).The Ni-O distance and coordinated number were 2.040±0.020 and 6.0±1.0,respectively.These results are consistent with the DFT calculations for [NiSO4(H2O)n ]^0 clusters.DFT and EXAFS are powerful techniques that can be used to enhance the resolution of NiSO 4 solution microstructure. The microhydration structure of nickel sulfate aqueous solution has been determined via density functional theory( DFT) calculation and extended X-ray absorption fine structure( EXAFS) spectroscopy. The geometric optimization and energy calculation of nickel sulfate hydrated clusters of the molecular formula [NiSO4( H2 O)n]0( n = 1-12) were determined via DFT using the B3 LYP method. Several possible initial structures were considered for clusters of each size to locate the equilibrium geometry.Based on the DFT calculation,the favorable structure of Ni2+includes the six-coordinated form of [NiSO4( H2 O)n]0 clusters. The results of hydration energy calculation suggest that the six-coordinated contact ion pair( CIP) is the stable configuration for small hydration clusters( n≤5),while the solventshared ion pair( SSIP) represents the favorable structure for medium hydration clusters( 6≤n≤10).The solvent is separated by x water molecules( xSIP,x ≥2 is the number of water molecule between Ni2+and SO42-) in larger hydration clusters( n≥11). The EXAFS analysis of the NiSO4 aqueous solutions and NiSO4·6 H2 O solid established that Ni2+was surrounded by six water molecules tightly forming an octahedral structure in the first hydration shell,and no CIP was found from 0. 70 mol/L to 2. 22 mol/L( near saturation). The Ni-O distance and coordinated number were 2. 040 ± 0. 020 ? and 6. 0 ± 1. 0,respectively. These results are consistent with the DFT calculations for [NiSO4( H2 O)n]0 clusters. DFT and EXAFS are powerful techniques that can be used to enhance the resolution of NiSO4 solution microstructure.
出处 《盐湖研究》 CSCD 2019年第2期53-68,共16页 Journal of Salt Lake Research
基金 Nature Science Foundation of Qinghai Province(2018-ZJ-945Q) NSFC(21573268) Joint Foundation of Salt Lake Chemical(U1607106) Instrument function development and technology innovation project of Chinese academy of sciences(2018g108)
关键词 [NiSO4(H2O)n]^0 CLUSTERS Ion PAIRS Structure Energy HYDRATION [NiSO4(H2O)n]0 clusters Ion pairs Structure Energy Hydration
  • 相关文献

参考文献3

二级参考文献79

  • 1吴梅银,王建明,张鉴清,曹楚南.掺锰氢氧化镍的结构与电化学性能(英文)[J].物理化学学报,2005,21(5):523-527. 被引量:17
  • 2任俊霞,周震,阎杰.Y掺杂对氢氧化镍电极高温性能的影响[J].物理化学学报,2007,23(5):738-742. 被引量:10
  • 3[3]中国科学院青海盐湖研究所.卤水和盐的分析方法[M].北京:科学出版社,1988:55-57.
  • 4曹绪龙 吕凯 崔晓红 石静 苑世领.物理化学学报,2010,26:1959-1959.
  • 5Dinca, M.; Surendranath, Y.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 10337. doi: 10.1073/pnas.1001859107.
  • 6Chen, X.; Xue, H. P.; Chang, X. N.; Zhang, L.; Zhao, Y. H.;Zuo, J. L.; Zang, H. G.; Xiao, W. Q../. Alloy. Compd. 2006, 425, 96. doi: lO.lO16/j.jallcom.2006.01.068.
  • 7Zhang, Y.; Liang, J. K.; Chen, X. L.; He, M.; Xu, T. J. Alloy. Compd. 2001, 327, 96. doi: 10.1016/S0925-8388(01)01405-0.
  • 8Keszler, D. A. Curt Opin. Solid State Mater Sci. 1999, 4, 155. doi: 10.1016/S1359-0286(99)00011-X.
  • 9Giese, R. F., Jr. Science 1966, 154, 1453. doi: 10.1126/ science.154.3755.1453.
  • 10Ma, R. Z.; Bando, Y.; Sato, T.; Golberg, D.; Zhu, H. G.; Xu, C. L.; Wu, D. H.Appl. Phys. Lett. 2002, 81, 3467. doi: 10.1063/ 1.1517178.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部