摘要
多视图模糊聚类综合了数据的不同表示,虽然能够产生更全面、宏观的聚类结果,但是容易受到噪声干扰.为了提高抵抗噪声的能力,提出了一种多视图模糊聚类算法.该算法同时继承了多视图聚类和模糊紧致性分离性聚类算法的优点,能够根据不同视图的重要性协同聚类,同时增强算法的鲁棒性.为了验证算法的有效性,选取4个多视图数据集进行了实验.实验结果表明,该算法不仅能够获得较高的聚类准确率,而且能有效地降低噪声数据对聚类结果的影响.
By synthesizing different representations of data,multi-view fuzzy clustering can produce more comprehensive and macroscopic clustering results.However it is vulnerable to noise.In order to improve the ability to resist noise,a multi-view fuzzy clustering algorithm is proposed which,inheriting the advantages of multi-view clustering and fuzzy compactness and separation clustering,can collaborate clustering according to the importance of different views and enhance robustness.In order to validate the effectiveness of this algorithm,four multi-view data sets are selected to carry out experiments.Experimental results show that this algorithm can not only achieve high clustering accuracy,but also effectively reduce the impact of noise data on clustering results.
作者
刘永利
郭呈怡
刘静
吴岩
LIU Yongli;GUO Chengyi;LIU Jing;WU Yan(School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,China)
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2019年第4期99-106,共8页
Journal of Xidian University
基金
国家自然科学基金(61872126)
关键词
多视图
模糊聚类
紧致性
分离性
multi-view
fuzzy clustering
compactness
separation