期刊文献+

镁合金温控轧辊的温度场(英文) 被引量:1

Temperature Field of Temperature Controlled Roll for Magnesium Alloy
原文传递
导出
摘要 采用导热油循环流动传热的方式对轧辊进行温度控制,基于有限差分法建立了轧辊、导热油传热过程的差分模型,利用FLUENT建立了导热油加热轧辊的流固耦合传热模型,并辅以相应的实验验证,给出了其传热过程中轧辊的温升曲线、辊身表面及横截面温度分布。结果表明:在不同的加热条件下,其表面温度分布呈现操作侧温度高、驱动侧温度低的特点,两端的温差范围在5~12℃,且流体温度与速度对其影响较小;轧辊内壁与外壁的最大温差6℃,可近似认为径向温度分布均匀;随着加热时间的增加,轧辊表面温度均呈速率减小的趋势上升,流体温度升高及速度增大时,轧辊温升变快;轧辊停止加热后,其表面温度不会立即下降且持续增长一段时间,约为5~8 min,流体的温度和速度对延长的时间影响较小;轧辊表面平均温度的计算值与实验值吻合较好,最大相对误差为8.3%,表明该模型可正确预测轧辊表面的平均温度,作为镁合金板材轧制模型的一部分,利于轧制过程中轧辊的等温控制,实现镁合金板材的等温轧制控制。 Magnesium alloy sheet rolling has special control requirements on the temperature of the work rolls, so in this paper, the temperature of the rolls was controlled by fluid-solid coupled heat transfer. Based on the finite difference method, a differential model for the heat transfer process of roll and thermal oil was established, which was complemented by the corresponding experimental verification. A fluid-solid coupling heat transfer model was also established by FLUENT, which gives the roll temperature rise curve and the distribution of surface and cross-section temperatures during the heat transfer process. The results show that the temperature near the operating side of the roll is the highest, the temperature decreases gradually from the operating side to the driving side, and the temperature difference range between the operating side and th e driving side is 5~12 °C, which is almost unaffected by the fluid temperature and speed. The maximum temperature difference between the inner wall and the outer wall of the roll is 6 °C, so it can be considered that the radial temperature distribution is even. Under different fluid temperatures and velocities, the temperature of the roll rises at a decreasing rate, and when the fluid temperature rises and the velocity increases, the temperature rise of the roll becomes faster. After the heating for the roll is stopped, its surface temperature does not immediately begin to drop and remains for a period of time, about 5~8 min, and the temperature and speed of the fluid have a small effect on the extended time. The calculated values of the average roll surface temperature agree well with the experimental values, and the maximum relative error is 8.3%, demonstrating that the finite differential model is effective, and can be used as part of the magnesium alloy plate rolling model.
作者 李洋 马立峰 姜正义 黄志权 林金宝 姬亚峰 Li Yang;Ma Lifeng;Jiang Zhengyf;Huang Zhiquan;Lin Jinbao;Ji Yafeng(Heavy Machinery Engineering Research Center of the Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China;University of Wollongong, Wollongong NSW 2522, Australia)
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2019年第7期2074-2083,共10页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(U1610253,51604181) Key Research and Development Program of Shanxi Province(201603D111004,201603D121010) Natural Science Foundation of Shanxi Province of China(201601D011012)
关键词 镁合金 有限差分法 耦合传热模型 温升曲线 温度分布 等温轧制 magnesium alloy finite difference method coupled heat transfer model temperature rise curve temperature distribution isothermal rolling
  • 相关文献

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部