期刊文献+

基于主题模型的微博评论方面观点褒贬态度挖掘 被引量:5

Aspect-Based Opinion and Affective Meaning in Microblogging Comments Via Topic Model
下载PDF
导出
摘要 在新浪微博中,原创微博下存在着很多用户评论。这些评论能反映原创微博的内容,用户的态度以及与其相关的一些话题。因此,对这些评论进行细粒度信息的提取与褒贬态度的分类很有必要。基于上述原因,该文首先提出与原创无关的评论判别方法,通过三个相似度方法得到原创微博与评论之间的相关度,从而判断评论对象是否为原创微博。其次,提出一种用于评论集褒贬态度和方面观点挖掘的新模型,该模型在LDA中加入了表情符号层与文本情感层,实现评论集方面和褒贬态度的同步检测。实验表明:表情符号情感层的融入能提高新模型褒贬态度识别能力。 In microblogging site,the comments under the original microblog reflect the original microblog’s content,users’ attitudes and certain related topics.To extract fine-grained information and affective meaning from those comments,we first propose to detect if a comment is targeted towards the microblog itself using three similarity methods.Then,a novel model is proposed for mining aspect-based opinion and affective meaning in microblogging comments.This model introduces emoticon sentiment and textual sentiment into LDA inference framework and achieves synchronized detection of aspect and affective meaning in comments.Experimental results demonstrate that the emoticon sentiment layer can improve the affective meaning recognition results.
作者 张茜 张士兵 任福继 张晓格 ZHANG Qian;ZHANG Shibing;REN Fuji;ZHANG Xiaoge(School of Electronics and In formation, Nantong University, Nantong,Jiangsu 226019,China;Nantong Research Institute for Advanced Communication Technologies,Nantong, Jiangsu 226019,China;Faculty of Engineering, Tokushima University,Tokushima 7700855,Japan)
出处 《中文信息学报》 CSCD 北大核心 2019年第6期116-123,140,共9页 Journal of Chinese Information Processing
基金 国家自然科学基金(61771263) 南通大学—南通智能信息技术联合研究中心开放课题基金(KFKT2017A05)
关键词 主题模型 方面观点 褒贬态度 用户评论 topic model aspect-based opinion affective meaning users' comments
  • 相关文献

参考文献5

二级参考文献40

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2Jansen B J, Zhang M, Sobel K, Chowdury A. Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 2009, 60(11): 2169-2188.
  • 3Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market. Journal of Computational Science, 2011, 2(1): 1-8.
  • 4Zhao J, Dong L, Wu J, Xu K. MoodLens: An emoticon- based sentiment analysis system for Chinese tweets. In Proc. the 18th KDD, Aug. 2012, pp.1528-1531.
  • 5Jiang L, Yu M, Zhou M, Liu X, Zhao T. Target-dependent Twitter sentiment classification. In Proc. the 49th ACL, Jun. 2011, pp.151-160.
  • 6Liu K L, Li W J, Guo M. Emoticon smoothed language models for Twitter sentiment analysis. In Proe. the 26th AAAI. Jul. 2012.
  • 7Bermingham A, Smeaton A F. Classifying sentiment in mi- croblogs: Is brevity an advantage? In Proc. the 19th ACM International Conference on Information and Knowledge Management, Oct. 2010, pp.1833-1836.
  • 8Kouloumpis E, Wilson T, Moore J. Twitter sentiment anal- ysis: The good the bad and the OMG! In Proc. the 5th ICWSM, Jul. 2011.
  • 9Barbosa L, Feng J. Robust sentiment detection on Twitter from biased and noisy data. In Proc. the 23rd International Conference on Computational Linguistics: Posters, Aug. 2010, pp.36-44.
  • 10Pak A, Paroubek P. Twitter as a corpus for sentiment anal- ysis and opinion mining. In Proe. LREC, May 2010.

共引文献107

同被引文献47

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部