期刊文献+

自适应抑制噪声的压缩感知ISAR成像方法

An Adaptive Noise Depression CS-based ISAR Imaging method
下载PDF
导出
摘要 基于压缩感知( Compressed Sensing,CS)的逆合成孔径雷达( Inverse Synthetic Aperture Radar,ISAR)在高信噪比情况下由有限脉冲成像表现良好,但在不可避免的强噪声情况下,基于压缩感知的成像方法受到挑战。针对这一挑战,提供一种自适应抑制噪声的CS-ISAR成像方法。该方法用能量门限分离不含目标的噪声单元,根据分离出的噪声单元估计噪声水平,再根据估计的噪声水平和设定的恒虚警率自适应地调整用于正交匹配追踪( Orthogonal Matched Pursuit,OMP)算法的残差门限,利用残差门限OMP 算法在减少脉冲数情况下成像。实测数据验证了所提方法能够利用有限数据脉冲在不同信噪比情况下自适应地抑制噪声,得到高质量ISAR图像。 Compressed sensing ( CS)-based inverse synthetic aperture radar ( ISAR) imaging with limited pulses performs well in the case of high signal-to-noise ratios.However,strong noises are usually inevitable in radar imaging,which challenges the CS-based approach.In this paper,we present an adaptive noise depression CS-ISAR imaging method,which can sustain strong noise and provide more scattering centers extracted with limited number of pulses.The ISAR images are reconstructed via orthogonal matched pursuit ( OMP),in which the iteration is terminated by a preseted residual thresholding ( RT). The RT is yielded by combining the noise level with a preseted constant false alarm rate and the number of measurements.The noise level is estimated from the noise range cells which are discriminated by Gaussianity test.Experiments show that the method is capable of precise estimation of scattering centers and adaptive suppression of noise with limited measurements.
作者 宋玉娥 胡永杰 卜红霞 SONG Yu′e;HU Yong-jie;BU Hong-xia(School of Electrical and Information Engineering,Beijing Polytechnic College,Beijing 100042,China;Network Center,Hebei Normal University,Shijiazhuang 050024,China)
出处 《中国电子科学研究院学报》 北大核心 2019年第6期573-579,共7页 Journal of China Academy of Electronics and Information Technology
基金 北京市自然基金项目(4164107) 河北师范大学自然科学科研基金项目(L2016B06) 2018年北京工业职业技术学院重点科研课题(BGZYKY201820Z)
关键词 舰船目标 逆合成孔径雷达 压缩感知 正交匹配追踪 恒虚警 ship targets inverse synthetic aperture radar ( ISAR) compressed sensing ( CS) orthogonal matched pursuit ( OMP) constant false alarm rate
  • 相关文献

参考文献4

二级参考文献17

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部