期刊文献+

包含Jacobsthal和Jacobsthal-Lucas数的r-循环矩阵的谱范数(英文) 被引量:4

On the Norms of r-circulant Matrices with Jacobsthal and Jacobsthal-Lucas Numbers
下载PDF
导出
摘要 本文研究元素分别是Jacobsthal数列和Jacobsthal-Lucas数列的r-循环矩阵A=Cr(J0,J1,…,Jn-1)和B=Cr(D0,D1,…,Dn-1)得到了矩阵谱范数的上下界,以及两矩阵克罗内克积和阿达玛积后的谱范数上下界. Abstract In this paper we study the norms of r-circulant matrices A=C r J 0,J 1,…,J n-1 and B=C r D 0,D 1,…,D n-1 where J n and D n are Jacobsthal and Jacobsthal-Lucas numbers,and give some bounds for the spectral norms of Kronecker and Hadamard products ofthe r-matrices A and B.
作者 何承源 邱涛 雷林 He Chengyuan;Qiu Tao;Lei Lin(School of Science,Xihua University,Sichuan 610039,China)
机构地区 西华大学理学院
出处 《数学理论与应用》 2018年第3期59-68,共10页 Mathematical Theory and Applications
基金 四川省应用基础研究计划(2013JY0178)
关键词 Jacobsthal数列 Jacobsthal-Lucas数列 R-循环矩阵 欧几里得范数 谱范数 Jacobsthal number Jacobsthal-Lucas number r-circulant matrix Euclidean norm Spectral norm
  • 相关文献

参考文献1

二级参考文献11

  • 1高殿伟.广义循环矩阵[J].辽宁师范大学学报,1988,2:7-11.
  • 2Falcon S,Plaza A. The k-Fibonacci sequence and the Pascal 2-triangle [J]. Chaos,Solitons Fract.,2007,33 : 38-49.
  • 3Kilic E. Sums of the squares of terms of sequence [J]. Indian Acad. Sci. (Math. Sci.), 2008,118 ( 1 ) : 27-41.
  • 4Falcon S,Plaza A. On k-Fibonacci numbers Of arithmetic indexes[J]. Appl. Math. Comput.,2009, 208:180-185.
  • 5Solak S, Bozkurt D. On the spectral norms of Cauchy- Toeplitz and Cauchy-Hankel matrices [J]. Appl. Math. Comput., 2003, 140:231-238.
  • 6Solak S,Bozkurt D. Some bounds on matrix and operator norms of almost circulant, Cauchy-Toeplitz and Cauchy-Hankel matrices[J]. Math. Comput. Applicat. Int. J., 2002, 7(3) :211-218.
  • 7Solak S. On the norms of circulant matrices with the Fibonacci and Lucas numbers [J]. Appl. Math. Comput., 2005, 160:125-132.
  • 8Solak S. Erratum to "On the norms of circulant matrices with the Fibonacci and Lucas numbers" [Appl. Math. Comput., 2005, 160:125-132] [J]. Appl. Math. Comput., 2007, 190: 1855-1856.
  • 9Yalciner A. Spectral norms of some special circulant matrices [J]. Int. J. Contemp. Math. Sciences, 2008, 3 (35) : 1733-1738.
  • 10Stuart J L, Weaver J R. Matrices that commute with a permutation matrix[J]. Linear Algebra and Its Appl., 1991, 150 : 255-265.

共引文献3

同被引文献22

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部