期刊文献+

大数据隐私动态防护框架

Dynamic Privacy Preserving Framework For Large Data
下载PDF
导出
摘要 大数据创造经济和社会效益的同时,也为隐私保护以及数据安全带来前所未有的风险。目前,隐私已经成为大数据应用领域亟待突破的难题,本文分析了隐私保护的现状与挑战,提出了一个以数据为核心的、全生命周期的、系统性的隐私动态防护技术框架,以降低大数据应用实践中的泄露风险,探索行之有效的隐私管理解决方案。 Big data bring about not only significant economic and social benefits,but also great risks and challenges on privacy protection.Currently,privacy has been considered as one of the greatest problems related big data. This paper analyzes the challenges, and provides a data-centric, life-cycle, systematic and dynamic privacy protection technology framework, in order to reduce the risk of privacy leakage in the practice of big data applications and explore effective privacy management solutions.
作者 刘孟旭 LIU Meng-xu(The information center of Henan Province,Henan Zhengzhou,450046)
机构地区 河南省信息中心
出处 《软件》 2019年第7期183-184,201,共3页 Software
关键词 大数据 隐私风险 动态隐私防护框架 隐私泄露 Big data Privacy risk Dynamic privacy preserving framework Privacy leakage
  • 相关文献

参考文献4

二级参考文献24

  • 1Gruteser M, Grunwald D. Anonymous usage of location- based services through spatial and temporal cloaking [C] // Proc of the 1st Int Conf on Mobile Systems, Applications and Services. New York: ACM, 2003:31-42.
  • 2Chow C Y, Mokbel M F. Trajectory privacy in [ocatio based services and data publication EJ. ACM SIGKDD Explorations Newsletter, 2011, 13(1): 19-29.
  • 3Chow C Y, Mokbel M F. Enabling private continuous queries for revealed user locations [G] //Advances in Spatial and Temporal Databases. Berlin: Springer, 2007:258-275.
  • 4Kim H I, Shin Y, Chang J W. A grid-based cloaking scheme for continuous queries in distributed systems [C] //Proe of the llth IEEE Int Conf on Computer and Information Technology (CIT). Los Alamitos, CA: IEEE Computer Society, 2011.. 75-82.
  • 5Wang /, Peng J, He L, et al. LBSs privacy preserving for continuous query based on semi-honest third parties [C] // Proc of the 31st IEEE Int Conf on Performance Computing and Communications (IPCCC). Los Alamitos, CA: IEEE Computer Society, 2012z 384-391.
  • 6Bamba B, Liu L, Pesti P, et al. Supporting anonymous location queries in mobile environmertts with privaeygrid [C] [/Proc of the 17th Int Conf on World Wide Web. New York: ACM, 2008:237-246.
  • 7Kido H, Yanagisawa Y, Satoh T. An anonymous communication technique using dummies for location-based services [C] /]Proc of the 2005 Int Conf on Pervasive Services. Los Alamitos, CA= IEEE Computer Society, 2005: 88-97.
  • 8Yiu M L, Je'nsen C S, Huang X, et al. SpaceTwist: Managing the tradeoffs among location privacy, query performance, and query accuracy in mobile services [C] // Proe of the 24th IEEE Int Conf on Data Engineering (ICDE 2008). Los Alamitos, CA= IEEE Computer Society, 2008: 366-375.
  • 9Dewri R, Ray I, Whitley D. Query m-invariance= Preventing query disclosures in continuous location-based services [C] // Proc of the 11th Int Conf on Mobile Data Management (MDM 2010). Los Alamitos, CA= IEEE Computer Society, 2010.. 95-104.
  • 10Pan X, Meng X, Xu J. Distortion-based anonymity for continuous queries in location-based mobile services [C] // Proc of the 17th ACM SIGSPATIAL Int Conf on Advances in Geographic Information Systems. New York= ACM, 2009= 256-265.

共引文献227

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部