期刊文献+

Supercritical superprocesses: Proper normalization and non-degenerate strong limit 被引量:1

Supercritical superprocesses: Proper normalization and non-degenerate strong limit
原文传递
导出
摘要 Suppose that X ={Xt, t≥0;Pμ} is a supercritical superprocess in a locally compact separable metric space E. Let φ0 be a positive eigenfunction corresponding to the first eigenvalue λ0 of the generator of the mean semigroup of X. Then Mt := e-λ0t〈φ0,Xt〉 is a positive martingale. Let M∞ be the limit of Mt. It is known(see Liu et al.(2009)) that M∞ is non-degenerate if and only if the L log L condition is satisfied. In this paper we are mainly interested in the case when the L log L condition is not satisfied. We prove that, under some conditions, there exist a positive function γt on [0,∞) and a non-degenerate random variable W such that for any finite nonzero Borel measure μ on E,lim/t→∞γt〈φ0,Xt〉=W, a.s.-Pμ.We also give the almost sure limit of γt〈f, Xt〉for a class of general test functions f. Suppose that X = {Xt, t≥0; Pμ} is a supercritical superprocess in a locally compact separable metric space E. Let φ0 be a positive eigenfunction corresponding to the first eigenvalue λ0 of the generator of the mean semigroup of X. Then Mt := e-λ0t〈φ0,Xt〉 is a positive martingale. Let M∞ be the limit of Mt. It is known(see Liu et al.(2009)) that M∞ is non-degenerate if and only if the L log L condition is satisfied. In this paper we are mainly interested in the case when the L log L condition is not satisfied. We prove that, under some conditions, there exist a positive function γt on [0,∞) and a non-degenerate random variable W such that for any finite nonzero Borel measure μ on E,lim/t→∞ γt〈φ0,Xt〉=W, a.s.-Pμ.We also give the almost sure limit of γt〈f, Xt〉for a class of general test functions f.
出处 《Science China Mathematics》 SCIE CSCD 2019年第8期1519-1552,共34页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 11671017, 11731009 and 11601354) Key Laboratory of Mathematical Economics and Quantitative Finance (Peking University), Ministry of Education, the Simons Foundation (Grant No. 429343) Youth Innovative Research Team of Capital Normal University
关键词 SUPERPROCESSES Seneta-Heyde norming non-degenerate STRONG LIMIT MARTINGALES superprocesses Seneta-Heyde norming non-degenerate strong limit martingales
  • 相关文献

参考文献1

二级参考文献31

  • 1Bass R F, Chen Z -Q. Brownian motion with singular drift. Ann Probab, 2013, 31: 791-817.
  • 2Chen Z -Q, Kim P, Song R. Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation. Ann Probab, 2012, 40:2483-2538.
  • 3Chen Z -Q, Kim P, Song R. Dirichlet heat kernel estimates for rotationally symmetric L@vy processes. Proc Lond Math Soe, 2014, 109:90-120.
  • 4Chen Z -Q, Kim P, Song R. Stability of Dirichlet heat kernel estimates for non-local operators under Feynman-Kac perturbations. Trans Amer Math Soc, 2015, 367: 5237- 5270.
  • 5Chen Z -Q, Kim P, Song R. Dirichlet heat kernel estimates for subordinate Brownian motions with Gaussian components. J Reine Angew Math, Ahead of print, DOI:10.1515/crelle-2013-0090.
  • 6Chen Z -Q, Kumagai T. A priori HSlder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev Mat Iberoam, 2010, 26:551-589.
  • 7Chen Z -Q, Ren Y -X, Wang H. An almost sure scaling limit theorem for Dawson- Watanabe superprocesses. J Funct Anal, 2008, 254:1988-2019.
  • 8Chen Z -Q, Yang T. Dirichlet heat kernel estimates for fractional Laplacian under non-local perturbation. Preprint, 2015, arXiv: 1503.05302.
  • 9Davies E B, Simon B. Ultracontractivity and the kernel for Schrhdinger operators and Dirichlet Laplacians. J Funct Anal, 1984, 59:335-395.
  • 10Eckhoff M, Kyprianou A E, Winkel M. Spine, skeletons and the strong law of large numbers for superdiffusion. Ann Probab (To appear), arXiv: 1309.6196.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部