期刊文献+

基于大数据的物联网智能监测系统在农区鼠害监测中的应用效果初报 被引量:9

Preliminary report on the application effect of IOT intelligent monitoring system based on big data technology for rodent monitoring in agricultural areas in China
原文传递
导出
摘要 为切实解决农区鼠害监测问题,全国农业技术推广服务中心联合清华-青岛大数据工程研究中心,通过大数据、物联网技术的融合应用,在全国范围内开展农区害鼠智能监测网络建设。2018年在15个省(自治区、直辖市)21个监测点开展首批试点。结果显示,2018年21个全国农区鼠害物联网智能监测站共监测到害鼠474只,隶属3科5属14种,总鼠密度为3.92%;褐家鼠、小家鼠、黄胸鼠、大仓鼠、黑线姬鼠为主要优势种群,占捕获总数的77.43%;优势鼠种在农田和农舍中均有分布,且随作物种植季节呈现出双峰波动节律。多点试验表明,基于大数据的物联网智能监测系统,可以准确诊断害鼠种类、精确计算鼠种构成,密切跟踪其数量和密度动态,并能实时监测其昼夜节律,替代人工作业,对阐明农区鼠害群落演替规律和活动节律、提高监测预警水平、科学指导精准防治有重要的实践意义。 In order to effectively solve the problem of rodent monitoring in agricultural areas, National Agro-technical Extension and Service Center, in conjunction with the Tsinghua-Qingdao Big Data Engineering Research Center, carried out the construction of intelligent monitoring network in rural areas through the integration of big data and Internet of Things(IOT) technologies. In 2018, the first batch of pilots was carried out in 21 monitoring points in 15 provinces.The data showed that 474 rodents were detected among 21 national monitoring sites in 2018, belonging to 3 families, 5 genera and 14 species, with a total population density of 3.92%. The dominant species were detected as Rattus norvegicus, Mus musculus, Rattus tanezumi, Tscherskia triton and Apodemus agrarius, accounting for 77.43% of the total. The dominant species are distributed in both farmland and farmhouses, and exhibit bimodal fluctuations with crop planting rhythms. The IOT intelligent monitoring system based on big data can diagnose the species of rodents accurately, calculate the composition of each rodent species, track its quantity and density dynamics and monitor its circadian rhythm in real time instead of manual operation. Since its capability of revealing the succession rules and activity rhythms of rodent communities in agricultural areas, the IOT intelligent monitoring system has important practical significance for improving the level of monitoring and early warning and scientific guidance for precise prevention and control.
作者 曾娟 韩立亮 郭永旺 赵心蕊 Zeng Juan;Han Liliang;Guo Yongwang;Zhao Xinrui(National Agro-technical Extension and Service Center, Beijing 100125, China;Tsinghua -Qingdao Big Data Engineering Research Center, Shandong Qingdao 266000, China)
出处 《中国植保导刊》 北大核心 2019年第7期28-35,共8页 China Plant Protection
基金 科技部“十二五”科技支撑课题(2012BAD19B02)
关键词 农区鼠害 智能监测 捕获率 鼠密度 优势鼠种 活动节律 farmland rodent intelligent monitoring rate of capture rodent density dominant species behavioral rhythm
  • 相关文献

参考文献8

二级参考文献67

共引文献84

同被引文献100

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部