期刊文献+

新型飞蛾火焰优化算法的研究 被引量:10

Research on New Moth-Flame Optimization Algorithm
下载PDF
导出
摘要 飞蛾火焰优化算法(Moth-Flame Optimization,MFO)是一种自然激励且易于实现的全局优化算法,在许多实际优化任务中表现出良好的性能。然而,MFO算法存在早熟收敛和容易陷入局部最优解的问题,针对这些不足,提出了一种Kent混沌动态惯性权值的改善飞蛾火焰优化算法(Ameliorative MFO,AMFO)。在AMFO算法中,引入Kent混沌映射搜索策略帮助当前最优解跳出局部最优;采用基于适应度值和迭代次数的动态惯性权值策略来平衡算法的开发和探索能力,以进一步提升MFO算法性能。在8个经典benchmark函数上验证AMFO算法的搜索精度和性能,并将其结果与标准飞蛾火焰优化算法、粒子群算法和差分进化算法进行比较,仿真结果表明AMFO算法具有较好的搜索性能。 Moth-Flame Optimization(MFO)algorithm,which is inspired by social behaviors of individuals in moth flame,is a nature-inspired and easy to implement global optimization algorithm.The MFO has shown good performance for many real-world optimization tasks.However,MFO has problems with premature convergence and easy trapping into local optimum solutions.In order to overcome these deficiencies,an Ameliorative MFO(AMFO)algorithm based on Kent chaotic dynamic inertia weight is proposed.In the AMFO algorithm,a Kent chaotic map search strategy is introduced to help the current optimal solution jump out of the local optimal solution.In addition,the dynamic inertia weight strategy based on fitness value and iteration number is used to balance the development and exploration ability and further improve the performance of MFO algorithm.The search accuracy and performance of AMFO algorithm are verified on 8 classical benchmark functions.The experimental results show that AMFO technique has superior search performance compared with standard MFO algorithm,particle swarm optimization algorithm and differential evolution algorithm.
作者 田鸿 陈国彬 刘超 TIAN Hong;CHEN Guobin;LIU Chao(Chongqing College of Humanities, Science & Technology, Chongqing 401524, China;Rongzhi College, Chongqing Technology and Business University, Chongqing 400033, China;Guizhou Aerospace Electronics Co., Ltd., Guiyang 550009, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第16期138-143,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61403331,No.61573306) 重庆市物联网产业共性关键技术创新主题专项项目(No.cstc2015zdcyztzx40007)
关键词 群智能 飞蛾火焰优化算法 Kent混沌 动态惯性权值 数值函数 swarm intelligence moth-flame optimization algorithm Kent chaotic dynamic inertia weight numerical function
  • 相关文献

参考文献7

二级参考文献68

  • 1郝竹林,冯民权,闵涛,谷明礼.地下水渗流参数反演的微分进化算法[J].自然灾害学报,2015,24(1):55-60. 被引量:4
  • 2张娟娟,郭建青,韩淑敏,万伟锋.基于改进模拟退火算法反演水文地质参数[J].中国农村水利水电,2005(9):5-8. 被引量:17
  • 3李守巨,上官子昌,刘迎曦,于贺.地下水渗流模型参数识别的模拟退火算法[J].岩石力学与工程学报,2005,24(A01):5031-5036. 被引量:6
  • 4郭建青,李彦,王洪胜,周宏飞.确定含水层参数的混沌序列优化算法[J].中国农村水利水电,2006(12):26-29. 被引量:28
  • 5Yang D, Li G, Cheng G. On the eficiency of chaos optimiza- tion algorithms for global optimization [J]. Chaos, Solitons b- Fractals, 2007, 34 (4): 1366-1375.
  • 6Tavazoei, Mohammad Saleh, Mohammad Haeri. An optimiza- tion algorithm based on chaotic behaviour and fractal nature [J]. Journal of Computational and Applied Mathematics, 2007, 206 (2): 1070-1081.
  • 7Yuan XF, Li ST, Wang YN, et al. Parameter identification of electronic throttle using a hybrid optimization algorithm [J]. Nonlinear Dyn, 2011, 63 (4): 549-557.
  • 8Dos Santos Coelho L. Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach [J]. Chaos, Solitons Fractals, 2009, 39 (4): 1504-1514.
  • 9Khoa T Q D, Nakagawa M. Training multilayer neural network by global chaos optimization algorithms [C] //International Joint Con- ference on Neural Networks IEEE, 2007: 136-141.
  • 10Ikeguchi T, Hasegawa M, Kimura T, et al. Theory and ap- plications of chaotic optimization methods [M]. Innovative Computing Methods and Their Applications to Engineering Problems. Springer Berlin Heidelberg, 2011 .. 131-161.

共引文献67

同被引文献92

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部