期刊文献+

一类具有Allee效应的捕食-食饵模型正解的唯一性和渐近行为

Asymptotic Behaviour and Uniqueness of Positive Solutions for a Predator-prey Model with Allee Effect
下载PDF
导出
摘要 研究一类具有加法Allee效应的捕食-食饵扩散模型。首先利用特征值的比较原理和不动点指数理论给出正解存在的充要条件,接着运用扰动理论讨论参数c充分大时正解的唯一性和稳定性。研究表明在一定条件下系统存在唯一的稳定解。最后通过抛物系统的比较原理得到全局吸引子的存在条件。 A diffusive predator-prey model with additive Allee effect is studied. Firstly, the sufficient and neces-sary conditions of the existence of positive solutions are given by means of the comparison principle of eigenvalue and the fixed point index. By virtue of the perturbation theory, the uniqueness and stability of positive solutions are discussed when the parameters is sufficiently large. The results show that the system has stable and unique positive solution under certain conditions. Finally, the existence condition of the global attractor is obtained by the comparison principle of parabolic system.
作者 李海侠 LI Haixia(School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013,China)
出处 《贵州大学学报(自然科学版)》 2019年第4期6-10,共5页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金项目资助(11801013) 陕西省自然科学基础研究计划项目资助(2014JQ2-1003) 陕西省教育厅专项资助(16JK1046) 宝鸡文理学院博士科研项目资助(ZK2018069) 渭南师范学院科研项目资助(16ZRRC05)
关键词 加法Allee效应 不动点指数 扰动理论 唯一性 全局吸引子 additive Allee effect fixed point index perturbation theory uniqueness global attractor
  • 相关文献

参考文献2

二级参考文献27

  • 1Allee W C.Animal Aggregations:A Study in General Sociology[M].Chicago:University of Chicago Press,1931:35-86.
  • 2Zhou J.Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes[DB/OL].[2014-07-20].http://link.springer.con/artlcle/10.1007/s40314-014-0131-1#/Page-1.
  • 3Yang L,Zhong S M.Dynamics of a diffusive predatorprey model with modified Leslie-Gower schemes and additive Allee effect[J].Comp Appl Math,DOI 10.1007/s40314-014-0131-1.
  • 4Wang J F,Shi J P,Wei J J.Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey[J].J Differential Equations,2011,251:1276-1304.
  • 5Zu J.Global qualitative analysis of a predator-prey system with Allee effect on the prey species[J].Mathematics and Computers in Simulation,2013,94:33-54.
  • 6Aguirre P,González-Olivares E,Torres S.Stochastic predator-prey model with Allee effect on prey[J].Nonlinear Analysis:Real World Applications,2013,14:768-779.
  • 7Cai Y L,Liu W B,Wang Y B,et al.Complex dynamics of a diffusive epidemic model with strong Allee effect[J].Nonlinear Analysis:Real World Applications,2013,14:1907-1920.
  • 8Cui R H,Shi J P,Wu B Y.Strong Allee effect in a diffusive predator-prey system with a protection zone[J].J Differential Equations,2014,256:108-129.
  • 9Wang W M,Zhu Y N,Cai Y L,et al.Dynamical complexity induced by Allee effect in a predator–prey model[J].Nonlinear Analysis:Real World Applications,2014,16:103-119.
  • 10Dancer E N.On the indices of fixed points of mapping in cones and applications[J].J Math Anal Appl,1983,91:131-151.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部