期刊文献+

基于切削电流系数的铣刀磨损状态监测 被引量:7

Monitoring Milling Cutter Wear Condition Based on Cutting Current Coefficients
下载PDF
导出
摘要 基于切削力系数的铣刀磨损状态监测方法提出了与切削参数独立的刀具磨损指标。由于存在干扰机床正常加工、实时性不佳、传感器安装不便和成本过高等问题,限制了其在实际工业环境中的应用。针对上述问题,结合切削力与主轴电流的关系,提出一种基于主轴切削电流系数的铣刀磨损状态监测方法。首先,融合切削力系数和主轴电流的优点,建立铣削电流模型;其次,根据切削电流模型进行切削电流系数辨识,记录新刀状态下切削系数;然后,使用切削系数实时估计相同加工工况下新刀切削电流,监测实际切削电流偏离估计值的程度,判断铣刀磨损状态;最后,通过实验与力信号对比验证该方法的正确性。实验结果表明,该方法可以替代基于切削力系数的磨损状态监测方法,能有效、实时、无干扰、便利和低成本地识别新刀、正常和严重3种磨损状态。 The cutting condition independent method based on force model coefficients is applied to monitor tool wear status.However,its application in an actual industrial environment is restricted due to multiple reasons,such as the interference in normal processing,lagging in real-time tracking,difficulties in sensor installation and high cost.In light of these problems,spindle cutting current coefficients are introduced.First,the cutting current model of a sharp tool is built with cutting force coefficients and spindle current.Then,the coefficients are identified,and the cutting current of a sharp real tool with the same parameters as the simulated model is estimated in real-time.The difference between the actual cutting current from that of the estimated value is tracked and the wear status is judged;Finally,the correctness and validity of the method are verified by experiments and comparison with force signals.The experimental results show that this method can replace the method based on cutting force coefficients.The proposed method recognizes the wear status without interference and narrowly lags behind in real-time tracking.
作者 李宏坤 张孟哲 郝佰田 张志新 LI Hongkun;ZHANG Mengzhe;HAO Haitian;ZHANG Zhixin(School of Mechanical Engineering,Dalian University of Technology Dalian,116024,China;School of Mechanical Engineering,Dalian University Dalian,116622,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2019年第4期713-719,900,共8页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51175057)
关键词 主轴电流 切削电流系数 铣刀磨损 状态监测 spindle current cutting current coefficients milling cutter wear condition monitoring
  • 相关文献

参考文献3

二级参考文献20

  • 1万军,蔡复之,张玉峰.铣刀破损功率监控方法的研究[J].清华大学学报(自然科学版),1994,34(2):40-45. 被引量:3
  • 2郭晶等.小波分析理论与MATLAB7实现.北京:电子工业出版社,2005:203-269.
  • 3郭晶等.神经网络理论与MATLAB7实现.北京:电子工业出版社,2005:44-59.
  • 4Ruzzene M.Natural frequencies and dam pings identification using wavelet transform:application to real data.Mechanical Systems and Signal Processing,199(2):207-218.
  • 5LIAO Hai-tao, ZHAO Wen-biao, GUO Huai-rui. Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model [ C ] // Reliability and Maintainability Symposium, 2006. RAMS' 06. Annual. Piscataway:IEEE, 2006:127-1.
  • 6Caesarendra W, Widodo A, Yang B S. Application of relevance vector machine and logistic regression for machine degradation assessment [J]. Mechanical Systems and Signal Processing, 2010, 24(4) : 1161- 1171.
  • 7Agogino A, Goebel K. Mill Data Sett, BEST Lab, UC Berkeley. NASA Ames Prognostics Data Repository [DB/OL]. [2007-05-10]. http://ti. are. nasa. gov/prolect/prognostie-data-repository.
  • 8Huang S N, Tan K K, Wong Y S, etal. Tool wear detection and fault diagnosis based on cutting force monitoring [J]. International Journal of Machine Tools and Manufacture, 2007, 47(3):444-451.
  • 9丁锋,何正嘉,訾艳阳,陈雪锋,曹宏瑞,谭继勇.基于设备状态振动特征的比例故障率模型可靠性评估[J].机械工程学报,2009,45(12):89-94. 被引量:49
  • 10李劲松,陈鼎昌.基于铣削力的刀具磨损监控研究[J].北京航空航天大学学报,1998,24(5):571-574. 被引量:10

共引文献14

同被引文献82

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部