摘要
为了准确分析翼面热环境,提出了一种并行迭代耦合方法。气动加热和结构传热分别采用有限体积法(finite volume method,简称FVM)和有限元法(finite element method,简称FEM)求解,且采用基于虚拟空间的插值方法进行数据传递。进行了圆管算例分析,2s时刻驻点温度计算值与试验值相对误差为5.16%,验证了并行迭代耦合方法的精度。进行了翼面热环境和热模态的分析,结果表明翼面最高温度与马赫数呈近似线性关系,且非耦合方法获得的翼面最高温度比耦合方法高342.2K,这是由于非耦合方法未考虑气动热与结构传热之间的耦合效应。相比热应力引起的结构附加几何刚度,热环境下材料刚度的降低是翼面刚度和固有频率下降的主要因素,并且随着马赫数的增加,低阶比高阶固有频率下降得更快。
In order to analyze the thermal environment of the wing,aparallel iterative coupled method is presented in this paper.The aerodynamic heating and structural thermal problems are analyzed by the finite volume method(FVM)and finite element method(FEM),respectively.Moreover,the data exchanges are conducted by an interpolation method based on a virtual space.A circular tube example is analyzed,and for the stagnation temperature at two second,the relative error between the calculated value and the tested one is 5.16%,so the analysis precision of the parallel iterative coupled method can be verified.Finally,the thermal environment and thermal modal of the wing are analyzed.The results show that the maximum temperature of the wing is linear with Mach number,and the maximum temperature obtained by the uncoupled method is 342.2 Khigher than that obtained by the coupled method.The reason is that the uncoupled method does not consider the coupled effect between the aerodynamic heating and structural thermal problems.Compared with the additional geometrical stiffness caused by thermal stress,the decrease of the material stiffness in the thermal environment is the main factor for the stiffness and natural frequency of the wing.In addition,as Mach number increases,the lower order natural frequency decreases faster than the higher order one.
作者
黄杰
姚卫星
HUANG Jie;YAO Weixing(Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics and Astronautics Nanjing,210016,China;State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics Nanjing,210016,China)
出处
《振动.测试与诊断》
EI
CSCD
北大核心
2019年第4期752-759,903,共9页
Journal of Vibration,Measurement & Diagnosis
基金
博士后创新人才支持计划资助项目
江苏高校优势学科建设工程资助项目
关键词
翼面
热环境
并行耦合方法
热刚度
热模态
wing
thermal environment
parallel coupled method
thermal stiffness
thermal modal