期刊文献+

基于多功率移动锚节点的WSN定位算法 被引量:3

WSN location algorithm based on multi-power mobility anchor nodes
下载PDF
导出
摘要 针对无线传感器网络中使用RSSI测距技术的定位算法精度不高与锚节点使用过多导致成本较大的问题,提出一种基于多功率移动锚节点的无线传感器网络节点RSSI定位方法,针对SCAN移动模型的共线性问题,设计一种锚节点的移动模型。使用单个多功率移动锚节点在区域内修正RSSI值,采用卡尔曼滤波对接收的信号强度值进行平滑处理,使其更接近真实值,用修正权值因子的三角加权质心算法定位待测节点的坐标。仿真结果表明,该算法在降低定位成本的情况下有效修正了接收的信号强度值,相对基于RSSI的加权质心算法提高了6%-7%的定位精度。 Aiming at the problems that the accuracy of positioning algorithm using RSSI ranging technology in wireless sensor networks is not high and the anchor nodes are overused,a wireless sensor network node RSSI positioning method based on multiple power mobile anchor nodes was proposed.Aiming at the collinearity problem of SCAN mobile model,a mobile model of anchor node was designed.A single multi-power mobile anchor node was used to correct the RSSI value in the area,and the Kalman filter was used to smooth the received signal strength to make it closer to the true value.The triangulated weighted centroid algorithm adopting the modified weight factor was used to locate the unknown node.The simulation results indicate that the proposed algorithm can effectively correct the value of the received signal strength under the condition of reducing the localization cost.Compared with the RSSI-based weighted centroid algorithm,6%-7% of the localization accuracy is improved for the proposed algorithm.
作者 王慧娇 吕奎霖 蒋华 WANG Hui-jiao;LYU Kui-lin;JIANG Hua(Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《计算机工程与设计》 北大核心 2019年第8期2117-2122,2189,共7页 Computer Engineering and Design
基金 广西可信软件重点实验室研究课题基金项目(kx201724)
关键词 无线传感器网络 接收信号强度 节点定位 移动锚节点 卡尔曼滤波 wireless sensor network received signal strength node localization mobile anchor node Kalman filter
  • 相关文献

参考文献4

二级参考文献71

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2朱剑,赵海,孙佩刚,毕远国.基于RSSI均值的等边三角形定位算法[J].东北大学学报(自然科学版),2007,28(8):1094-1097. 被引量:76
  • 3Mao X, Tang S, Xu X et al. iLight: Indoor Device free pas sire tracking using wireless sensor networks//Proceedings of the 30th IEEE International Conference on Computer Com- munications. Shanghai, China, 2011:281-285.
  • 4Ding M, Cheng X. Fault tolerant target tracking in sensor networks//Proceedings of the 10th ACM International Sym posium on Mobile Ad Hoc Networking and Computing. New York, USA, 2009:125-134.
  • 5Samarah S, Al-Hajri M, Boukerche A. An energy efficient prediction-based technique for tracking moving objects in wsns//Proceedings of the Conference on Communications (ICC). Eyoto, Japan, 2011:1-5.
  • 6Wang Z, Bulut E, Szymanski B K. Distributed energy- efficient target tracking with binary sensor networks. ACM Transactions on Sensor Networks, 2010, 6(4) : 1-32.
  • 7Subramaniam S, outlier detection els//Proceedings Very Large Data Palpanas T, Papadopoulos D et al. Online in sensor data using non-parametric mod- of the 32nd International Conference on Bases. Seoul, Korea, 2006: 187-198.
  • 8Zhao F, Shin J, Reich J. Information-driven dynamic sensor collaboration for tracking application. IEEE Signal Process- ing Magazine, 2002, 19(3): 61-72.
  • 9Brooks R R, Ramanathan P, Sayeed A M. Distributed target classification and tracking in sensor networks. Proceedings of the IEEE, 2003, 91(8) : 1163-1171.
  • 10IA D, Wong K D, Hu Y H. Detection, classification and tracking of targets in distributed sensor networks. IEEE Signal Processing Magazine, 2002, 19(2): 17-29.

共引文献49

同被引文献21

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部