期刊文献+

基于Curvelet变换与一致性约束的遥感图像融合 被引量:1

Remote sensing image fusion based on Curvelet transform coupling consistency constraint
下载PDF
导出
摘要 为解决当前遥感图像融合方案存在的块效应以及光谱扭曲等不足,在图像归一化区域方差的基础上,设计一致性约束规则的融合方法。利用变换,从多光谱图像中分解出亮度分量;将其与全色图像在快速离散Curvelet的变换下,求取高、低频系数;根据高频系数的归一化区域方差,建立一致性约束规则,对其进行融合;将不同低频系数的归一化区域能量特征进行比较,采用不同的融合方法对低频系数进行融合;基于融合后的子带系数,将其通过Curvelet与HSV逆变换,完成图像融合。通过对比实验发现,与当前遥感图像融合方法相比,所提方法不仅具有更高的融合质量,最小光谱扭曲度仅为2.291,其具备更高的融合效率,所需时耗为1.74s。 To solve the block effect and spectral distortion of current remote sensing image fusion schemes,a fast discrete Curvelet transform coupling consistency constraint rule based remote sensing image fusion algorithm was proposed.The HSV transform was used to obtain the luminance components of multispectral images.The fast discrete Curvelet transform was used to process the brightness components and panchromatic images for obtaining the high coefficients and low frequency coefficients.The consistency constraint rules were established using the normalized regional variance of the high-frequency coefficients to fuse the high-frequency coefficients.The normalized region energy characteristics of different low frequency coefficients were compared,and different fusion methods were used to fuse the low frequency coefficients according to the comparison results.The fusion image was obtained by fast discrete Curvelet inverse transform and HSV inverse transform.Experimental results show that,compared with the current remote sensing image fusion methods,the proposed method has not only higher fusion quality with the minimum spectral distortion of 2.291,but also better fusion efficiency with the time cost of 1.74 s.
作者 张维 陈报章 赵亮 ZHANG Wei;CHEN Bao-zhang;ZHAO Liang(School of Environment Science and Spatial Informatics,China University of Mining and Technology,Xuzhou 221116,China;Institute of Building Intelligence,Jiangsu Vocational Institute of Architectural Technology,Xuzhou 221000,China;School of Mechanics and Civil Engineering,China University of Mining and Technology,Xuzhou 221116,China)
出处 《计算机工程与设计》 北大核心 2019年第8期2295-2300,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(41271116) 中国高等教育学会职业技术教育基金项目(GZYYB2018135) 徐州市科技计划基金项目(KC16SQ187) 江苏省教育信息化研究基金项目(20180022) 江苏省建设系统科技基金项目(2018ZD295) 江苏省住房与城乡建设厅基金项目(2018ZD328)
关键词 遥感图像融合 HSV变换 快速离散Curvelet变换 归一化区域方差 一致性约束规则 归一化区域能量 remote sensing image fusion HSV transform fast discrete Curvelet transform normalized regional variance consistency constraint rule normalized region energy
  • 相关文献

参考文献5

二级参考文献39

  • 1张宁玉,吴泉源.BROVEY融合与小波融合对QUICKBIRD图像的信息量影响[J].遥感技术与应用,2006,21(1):67-70. 被引量:25
  • 2周爱霞,张行南,高连峰.基于DEM和IHS变换的遥感图像反立体纠正方法研究[J].地理与地理信息科学,2006,22(6):42-44. 被引量:6
  • 3于海洋,闫柏琨,甘甫平,迟文学,武法东.基于Gram Schmidt变换的高光谱遥感图像改进融合方法[J].地理与地理信息科学,2007,23(5):39-42. 被引量:32
  • 4Daugman J. The importance of being ran_dora: statistical principles of iris recognition [ J ]. Pattern Recognition, 2003, 36(2) :279 -291.
  • 5Wildes Richard P. Iris recognition: An em_erging bio- metric technology [ J ]. Proceedings of the IEEE. 1997,85 (9) :1348 - 1363.
  • 6Boles W W. Security system based on hu_man iris identi- fication using wavelet transfor_m[J]. Engineering Appli- cations of Artificial Intelligence. 1998,11 (1) :77 - 85.
  • 7Masek L. Recognition of Human Iris Pat_terns for Bio- metric Identification [ EB/OL ]. http ://. edu. art/ pk/ student pro_jects/libor ,2003.
  • 8Babu N T N, Vaidehi V. Fuzzy based iris recognition sys- tem(FIRS) for person identi_fication[ C] //Proc of In- ternational Conference on Recent Trends in Information Technology. 2011 : 1005 - 1011.
  • 9Lim Shinyoang, Lee Kwanyong, Byeon Okhwan, et at. Efficient iris recognition through improvement of feature vector and classifier[ J]. Journal of Electronics and Tele- communication Research Institute, 2001, 23 ( 2 ) : 61 -70.
  • 10Starck J L, Murtagh F, Candes E J, et al. Gray and Col- or Image Contrast Enhancement by the Curvelet Transform [J]. IEEE Trans on Image Processing, 2003,12 (6): 706 -717.

共引文献34

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部