期刊文献+

基于AFSA-GA混合算法的圆锥刀轨迹优化

Conical Tool Trajectory Optimization Based on AFSA-GA Hybrid Algorithm
下载PDF
导出
摘要 针对工业生产上用圆锥刀侧铣加工非可展直纹面问题,通过两点偏置法计算原始刀轴矢量位置和误差度量函数求取单刀位下的刀轴矢量位置.对于各个刀位下的不同位置优化问题,提出基于人工鱼群(AFSA)和遗传算法(GA)的混合算法作为求解策略.仿真建模计算显示,基于人工鱼群和遗传算法的混合算法的仿真计算结果精度较高,轨迹优化后刀具位置集合形成的刀具包络面误差最小,对于非可展直纹面侧铣加工具有一定的实际意义. For the non-developable ruled surface problem of conical tool side milling in industrial production,the original tool axis vector position and error metric function are calculated by two-point offset method to obtain the tool axis vector position under the single tool position.For different position optimization problems under each cutter position,a hybrid algorithm based on artificial fish swarm (AFSA) and genetic algorithm (GA) is proposed as the solution strategy.Simulation modeling calculation shows that the simulation results of hybrid algorithm based on AFSA-GA are accurate,and the tool envelope surface error formed by the tool position set after trajectory optimization is the smallest,which has certain practical significance for non-expandable straight expandable side milling machining.
作者 杨喆 YANG Zhe(School of Information Engineering,Shenyang University,Shenyang 110044,China)
出处 《沈阳大学学报(自然科学版)》 CAS 2019年第4期338-343,共6页 Journal of Shenyang University:Natural Science
关键词 侧铣加工 非可展直纹面 人工鱼群 遗传算法 刀轴轨迹优化 flank milling non-developable ruled surface artificial fish swarm algorithm (AFSA) genetic algorithm (GA) tool axis trajectory planning
  • 相关文献

参考文献2

二级参考文献34

  • 1房丰洲,刘向东,LEELC.脆性材料的超精加工——脆性材料的钻石切削综述(英文)[J].纳米技术与精密工程,2003,1(1):38-47. 被引量:2
  • 2宫虎,曹利新,刘健.数控侧铣加工非可展直纹面的刀位整体优化原理与方法[J].机械工程学报,2005,41(11):134-139. 被引量:30
  • 3陈发来.双二次Bezier曲面的正性与凸性[J].高校应用数学学报(A辑),1996,11(4):467-476. 被引量:3
  • 4王青,柯映林,李江雄.基于力密度方法的NURBS曲线和曲面变形框架[J].机械工程学报,2007,43(3):135-142. 被引量:8
  • 5MONIES F, REDONNET J, RUBIO W, et al. Improved positioning of a conical mill for machining ruled surfaces: Application to turbine blades[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal ofEngineeringManufacture, 2000, 214(7): 625-634.
  • 6MONIES F, RUBIO W, REDONNET J, et al. Comparative study of interference caused by different position settings of a conical milling cutter on a ruled surface[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2001, 215(9): 1305-1317.
  • 7LARTIGUE C, DUC E, AFFOUARD A. Tool path deformation in 5-axis flank milling using envelope surface[J]. Computer-Aided Design, 2003, 35(4) : 375-382.
  • 8ZHU L M, ZHENG G, DING H, et al. Global optimization of tool path for five-axis flank milling with a conical cuRer[J]. Computer-AidedDesign, 2010, 42: 903-910.
  • 9ZHANG X M, ZHU L M, ZHENG G, et al. Tool path optimisation for flank milling ruled surface based on the distance function[J]. International Journal of Production Research, 2010, 48(14): 4233-4251.
  • 10CHU C, LEE C, TIEN K, et al. Efficient tool path planning for 5-axis flank milling of ruled surfaces using ant colony system algorithms[J]. International Journal ofProduction Research, 2011, 49(6).. 1557-1574.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部