摘要
二次推断函数已成为纵向数据分析的重要工具。文章介绍了参数和半参数模型的二次推断函数方法研究成果及最新进展,主要包括边际模型和混合效应模型中基于二次推断函数的参数估计、变量选择;二次推断函数方法在经验似然、测量误差模型方面的研究成果。指出了二次推断函数方法尚待解决的一些问题并对其未来的研究进行展望。
Quadratic inference function has become an important tool for longitudinal data analysis. This paper introduces the research findings and latest research progress of quadratic inference functions(QIF) method for parametric and semi-parametric models,mainly including parameter estimation,variable selection based on the quadratic inference functions in marginal model and mixed effect model, and the research achievements of quadratic inference function method in empirical likelihood and measurement error model. The paper also points out some problems to be solved in quadratic inference function method and prospects its future research.
作者
赵明涛
许晓丽
Zhao Mingtao;Xu Xiaoli(Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu Anhui 233030, China)
出处
《统计与决策》
CSSCI
北大核心
2019年第15期22-28,共7页
Statistics & Decision
基金
国家社会科学基金青年项目(15CTJ008)
关键词
纵向数据
二次推断函数
惩罚二次推断函数
参数估计
变量选择
longitudinal data
quadratic inference functions
penalized quadratic inference functions
parameter estimation
variable selection