期刊文献+

参数估计和变量选择的二次推断函数方法研究新进展 被引量:2

New Progress in Study of Quadratic Inference Function Method for Parameter Estimation and Variable Selection
下载PDF
导出
摘要 二次推断函数已成为纵向数据分析的重要工具。文章介绍了参数和半参数模型的二次推断函数方法研究成果及最新进展,主要包括边际模型和混合效应模型中基于二次推断函数的参数估计、变量选择;二次推断函数方法在经验似然、测量误差模型方面的研究成果。指出了二次推断函数方法尚待解决的一些问题并对其未来的研究进行展望。 Quadratic inference function has become an important tool for longitudinal data analysis. This paper introduces the research findings and latest research progress of quadratic inference functions(QIF) method for parametric and semi-parametric models,mainly including parameter estimation,variable selection based on the quadratic inference functions in marginal model and mixed effect model, and the research achievements of quadratic inference function method in empirical likelihood and measurement error model. The paper also points out some problems to be solved in quadratic inference function method and prospects its future research.
作者 赵明涛 许晓丽 Zhao Mingtao;Xu Xiaoli(Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu Anhui 233030, China)
出处 《统计与决策》 CSSCI 北大核心 2019年第15期22-28,共7页 Statistics & Decision
基金 国家社会科学基金青年项目(15CTJ008)
关键词 纵向数据 二次推断函数 惩罚二次推断函数 参数估计 变量选择 longitudinal data quadratic inference functions penalized quadratic inference functions parameter estimation variable selection
  • 相关文献

参考文献4

二级参考文献48

  • 1Liang, H., Hardle, W. and Carroll, R.J., Estimation in a semiparametric partially linear erroers-in- variables model, The Annals of Statistics, 27(1999), 1519-1535.
  • 2Liang, H., Wang, S.J. and Carroll, R.J., Partially linear models with missing responses variables and error-prone covariates, Biometrika, 94(2007), 185-198.
  • 3Cui, H.J. and Chen, X.S., Empirical likelihoods confidence region for parameter in the error-in- variables, Journal of Multivariate Analysis, 84(2003), 101-115.
  • 4Liu, Q., Estimation of the linear EV model with censored data, Journal of Statistical Planning and Inference, 141(2011), 2463-2471.
  • 5Tibshirani, R., Regression shrinkage and selection via the LASSO, Journal of the Royal Statistical Society: Series B, 58(1996), 267-288. F.
  • 6u, W.J., Penalized regression: the bridge versus the LASSO, Journal of Computational and Graphical Statistics, 7(1998), 397-416.
  • 7Fan, J.Q. and Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96(2001), 1348-1360.
  • 8Liang, K.L. and Zeger, S.L., Longitudinal data analysis using generalised estimating equations, Biometrika, 73(1986), 13-22.
  • 9Crowder, M., On the use of a working correlaton matrix in using generalised linear models for repeated measures, Biometrika, 82(1995), 407- 410.
  • 10Qu, A., Lindsay, B.G. and Li, B., Improving generalized estimating equations using quadratic infer- ence functions, Biometrika, 87(2000), 823-836.

共引文献6

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部