期刊文献+

基于DHMM的低心率变异性心音的分割方法 被引量:2

Low Heart Rate Variability Heart Sound Segmentation Method Using DHMM
下载PDF
导出
摘要 针对现有心音定位分割方法精度有限的难题,提出了一种对心率变异性较低的信号建模分割方法。首先,通过集合经验模态分解(Ensemble empirical mode decomposition,EEMD)使用有效的本征模态函数(Intrinsic mode function,IMF)分量来表征心音信号,提高心音信号的可分析性;然后,通过基础心音与非基础心音间的高斯约束关系建立高斯混合模型(Gaussian mixture model,GMM);接着,优化隐马尔可夫模型(Hidden Markov model,HMM)并建立基于时间相关性的隐马尔可夫模型(Duration-dependent hidden Markov model,DHMM),更简洁地描述分割模型,降低算法复杂度;最后,通过时域特征区分出s1,收缩期,s2和舒张期。将本文算法与经典Hilbert算法和逻辑回归的隐半马尔科夫模型(Logistic regression hidden semi-Markov model,LRHSMM)算法进行了对比,实验结果表明,本文算法的检出正确率和运算耗时等评价指标更优。 Aiming at the problem that the existing heart sound localization segmentation method has limited precision,a method of modeling and segmentation of heart sound signals with low heart rate variability is proposed.Firstly,the effective intrinsic mode function(IMF)component of the ensemble empirical mode decomposition(EEMD)is used to characterize the heart sound signal to improve the analyzability of heart sound signals.Then,the Gaussian mixture model(GMM)is established by the Gaussian constraint relationship between the basic heart sound and the non-basic heart sound.Next,the hidden Markov model(HMM)is optimized and the duration-dependent hidden Markov model(DHMM)is established,which can describe the segmtaention model more concisely and reduce the algorithm's complexity.Finally,the s1,systolic phases,s2,and diastolic phases are distinguished by time domain features.The proposed algorithm is compared with the classical Hilbert method and logistic regression hidden semi-Markov model(LRHSMM).Experimental results show that the proposed algorithm has better evaluation indicators such as detection accuracy and calculation time.
作者 许春冬 周静 应冬文 侯雷静 龙清华 Xu Chundong;Zhou Jing;Ying Dongwen;Hou Leijing;Long Qinghua(Faculty of Information Engineering,Jiangxi University of Science and Technology,Ganzhou,341000,China;Key Laboratory of Speech Acoustics and Content Understanding,Institute of Acoustics,Chinese Academy of Sciences,Beijing,100190,China)
出处 《数据采集与处理》 CSCD 北大核心 2019年第4期605-614,共10页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(11864016)资助项目 江西省研究生创新专项资金(YC2018-S330)资助项目 江西省文化艺术规划课题(YG2017384)资助项目
关键词 心音分割 集合经验模态分解 高斯建模 时域特征 基于时间相关性的隐马尔可夫模型 heart sound segmentation ensemble empirical mode decomposition Gaussian modeling time domain feature duration-dependent hidden Markov model(DHMM)
  • 相关文献

参考文献6

二级参考文献61

  • 1杨秀梅,潘家华,张祖兴,方立彬,纪元霞,樊耘,王威廉.ICA在心音信号处理中的应用[J].生物医学工程学杂志,2008,25(4):766-769. 被引量:4
  • 2曹思远,陈香朋.The Second-generation Wavelet Transform and its Application in Denoising of Seismic Data[J].Applied Geophysics,2005,2(2):70-74. 被引量:19
  • 3徐向华,朱杰,郭强.语音识别中基于最小描述长度准则的决策树动态剪枝算法[J].声学学报,2006,31(4):370-376. 被引量:7
  • 4MAGLOGIANNIS I, LOUKIS E, ZAFIROPOULOS E, et al. Support vectors machine-based identification of heart valve diseases using heart sounds [ J ]. Computer Methods and Programs in Biomedicine, 2009, 95(1): 47-61.
  • 5UGUZ H, ARSLAN A, TURKOGLU I. A biomedical system based on hidden Markov model for diagnosis of the heart valve diseases [ J ]. Pattern Recognition Let- ters, 2007, 28 (4) :395-404.
  • 6QU Z L. Chaos in the genesis and maintenance of cardiac arrhythmias [ J ]. Progress in Biophysics and Molecular Biology, 2011, 105(3) :247-257.
  • 7LIB B, YUAN Z F. Non-linear and chaos characteristics of heart sound time series [ J ]. Proceedings of the Insti- tution of mechanical engineers, Part H : Journal of Engi- neering in Medicine, 2008, 222(3) :265-272.
  • 8LAN S. The nature of fractal geometry [ M ]. London : Springer-Verlag London Limited, 2010.
  • 9KUMAR D, CARVALHO P, ANTUNES M, et al. Dis- crimination of heart sounds using chaos analysis in vari- ous subbands [C]. Proceedings 2nd International Confer- ence on Bio-Inspired Systems and Signal Processing, 2009 : 369-375.
  • 10成克强,王俊.早搏心电信号的标度不变性分析[J].生物医学工程学志,2010,27(4):753-756.

共引文献48

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部