期刊文献+

利用块稀疏特性的压缩感知麦克风阵列声源定位 被引量:1

Microphone Array Direction of Arrival Estimation Based on Block Sparse Feature
下载PDF
导出
摘要 与传统声源定位算法如相位变换加权、时延累加定位不同,压缩感知麦克风阵列声源定位算法可将声源定位转化为稀疏重构问题从而获得较高的性能。但在实际应用环境下,由于远场声源自身指向性、空间混响等原因,声源方向向量往往呈现块稀疏度结构,导致采用传统稀疏恢复算法如正交匹配追踪算法(Orthogonal matching pursuit,OMP)等进行压缩感知定位性能下降。本文在压缩感知声源定位算法中引入块稀疏似零范数,以压缩感知为基本框架,采用块稀疏似零范数稀疏恢复进行声源方向向量的重构,获取声源的方位。实验结果表明,相较于传统声源定位算法和基于OMP的压缩感知声源定位算法,本文算法具有更高的定位精度。 Different from traditional direction of arrival(DOA)estimation algorithms such as steered response power phase transform(SRP-PHAT)algorithm and delay-and-sum(DS)algorithm,the compressed sensing(CS)microphone arrays DOA algorithm transforms the sound source localization into the reconstruction problem of sparse signal to achieve better performance.However,in practical application environment,the direction vector of the far-field sound source tends to exhibit block sparseness due to the sound source directivity,the spatial reverberation and other reasons,which leads to the performance degradation of traditional sparse recovery algorithms such as orthogonal matching pursuit(OMP)algorithm.In this paper,the block approximated l0 is introduced into the microphone array CS DOA algorithm.Under the CS framework,the block approximated l0 sparse recovery is used to reconstruct the direction vector of the sound source to obtain DOA.Experimental results show that the proposed algorithm is capable of yielding higher positioning accuracy compared with traditional algorithms and traditional sparse recovery algorithm using OMP algorithm.
作者 李剑汶 章宇栋 童峰 黄惠祥 Li Jianwen;Zhang Yudong;Tong Feng;Huang Huixiang(Key Laboratory of Underwater Acoustic Communication and Marine Information Technology Ministry of Education,XiamenUniversity,Xiamen,361100,China)
出处 《数据采集与处理》 CSCD 北大核心 2019年第4期682-688,共7页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(11574258)资助项目 福建省高校产学合作(2015H6019)资助项目 重点实验室基金一般项目(6142109180303)资助项目
关键词 麦克风阵列 声源定位 压缩感知 块稀疏似零范数 microphone array direction of arrival(DOA) compressed sensing(CS) block approximated l0
  • 相关文献

参考文献5

二级参考文献43

  • 1[1]Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J],IEEE Trans.On Signal Processing,1993,41(12):3397-3415.
  • 2[3]Arthur P L,Philipos C L.Voiced/unvoiced speech discrimination in noise using gabor atomic decomposition[A],Proc.Of IEEE ICASSP[C],Hong Kong,April,2003,VoL Ⅰ:820-828.
  • 3[4]Y.C.Pati,R.Rezaiifar,P.S.Krishnaprasad "Orthogonal Matching Pursuit:Recursive Function Approximation with Applications to Wavelet Decomposition",the 27th Annual Asilomar Conference onSignal System and Computers,Pacific Grove,CA,Nov.1993
  • 4Wang Qinghua, Ivanov T, Aarabi E Acoustic Robot Navigation using Distributed Microphone Arrays. Information Fusion, 2004,Vol.5: 131-140.
  • 5Potamitis I, Chen Huimin, Tremoulis G. Tracking of Multiple Moving Speakers with Multiple Microphone Arrays. IEEE Trans.on speech and audio processing, 2004, 12(5): 520-529.
  • 6Brandstein M. A framework for speech source localization using sensor arrays. Doctoral Dissertation, Brown University, May 1995.
  • 7DiBiase J. A high-accuracy, low-latency technique for talker localization in reverberant environments. PhD thesis, Brown University, Providence RI, USA, May 2000.
  • 8Kinsler L, Frey A, Coppens A, Sanders J. Fundamentals of Acoustics. Third edition, New York: John Wiley & Sons, 1982:104-131.
  • 9Ziomaek L. Fundamentals of Acoustic Field Theory and Space-Time Signal Processing. Boca Raton, FL: CRC Press, 1995:210-248.
  • 10Huang Jie, Ohnishi N, Sugie N. Modeling the precedence effect for sound localization in reverberant environment. IEEE Instrumentation and Measurement Technology Conference,Brussels, June 1996: 633-636.

共引文献46

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部