期刊文献+

基于深度学习的通信信号调制方式识别 被引量:10

Communication Signal Modulation Recognition Based on Deep Learning
下载PDF
导出
摘要 针对采用传统机器学习算法对通信信号调制识别方法中的计算复杂度高、准确率低以及人工提取特征步骤繁琐等问题,提出一种基于深度神经网络通信信号调制识别模型。模型可以直接识别经过采样之后的通信信号类别,且具有识别准确率高、通用性强、抗噪声性能好及处理流程简便等特点,有效解决了传统算法无法实现自动提取特征的缺陷。通过大量实验以及对通信信号特征的准确分析,采用卷积神经网络和循环神经网络等网络的组合设计,构建了一个识别准确率较高且端到端的通信信号识别模型。 Aiming at the problems such as high complexity, low accuracy and cumbersome manual extraction of features by traditional machine learning algorithm,a kind of communication signal modulation recognition model based on deep neural network is proposed. The model can directly identify the sampled communication signal category,and has such characteristics as high recognition accuracy,strong versatility,good anti-noise performance,and simple processing flow. At the same time,the method of using neural network for identification can effectively solve the problem that the traditional algorithm cannot realize automatic characteristic extraction. Based on a large number of experiments and accurate analysis of communication signal characteristics,a combination of convolutional neural networks and cyclic neural networks is used to construct a communication signal recognition model with high recognition accuracy and end-to-end characteristics.
作者 侯涛 郑郁正 HOU Tao;ZHENG Yuzheng(Chengdu University of Information Technology, Chengdu 610225, China)
出处 《无线电工程》 2019年第9期796-800,共5页 Radio Engineering
关键词 人工智能 深度学习 调制 识别 artificial intelligence deep learning modulation recognition
  • 相关文献

参考文献3

二级参考文献27

  • 1包锡锐,吴瑛,周欣.基于高阶累积量的数字调制信号识别算法[J].信息工程大学学报,2007,8(4):463-467. 被引量:23
  • 2SWAMI A and SADLER B M. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416-429. doi: 10.1109/26.837045.
  • 3SHAKRA Mahmoud M, SHAHEEN Ehab M, BAKR Hossam Abou, et al. C3. Automatic digital modulation recognition of satellite communication signals[C]. 32nd National Satellite Communication Signals, Giza, 2015: 118-126. doi: 10.1109/ NRSC.2015.7117822.
  • 4WANG Lanxun, REN Yujing, and ZHANG Ruihua. Algorithm of digital modulation recognition based on support vector machines[C]. International Conference on Machine Learning and Cybernetics, Baoding, 2009: 980-983. doi: 10.1109/ICMLC.2009.5212366.
  • 5LIU Mingzhu, ZHAO Yue, Shi Lin, et al. Research on recognition algorithm of digital modulation by higher order cumulants[C]. Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Harbin, 2014: 686-690. doi: 10.1109/~MCCC.2014.146.
  • 6FEHSKE A, GAEDDERT J, and REED J. A new approach to signal classification using spectral correlation and neural networks[C]. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD, 2005: 144-150. doi: 10.1109/DYSPAN. 2005. 1542629.
  • 7HAN Yu, WEI Guohua, SONG Chunyun, et al. Hierarchical digital modulation recognition based on higher-order cumulants[C]. Second International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), Harbin, 2012: 1645-1648. doi: 10.1109 /IMCCC.2012.398.
  • 8VISAN D A, JURIAN M, LITA I, et al. Modeling and simulation of an recognition system for digital modulated signals[C]. 32nd International Spring Seminar on Electronics Technology(ISSE), Brno, 2009: 1-5. doi: 10.1109/ISSE.2009. 5206992.
  • 9YAJNANARAYANA V and AHMED I Z. Novel method for blind constellation detection using template based classifier for quadrature digital modulation schemes[C]. 10th International Conference on Electronic Measurement & Instruments (ICEMI), Chengdu, 2011: 1-4. doi: 10.1109/ ICEMI.2011.6037934.
  • 10RAMKUMAR B. Automatic modulation classification for cognitive radios using cyclic feature detection[J]. IEEE Circuits and Systems Magazine, 2009, 9(2): 27-45. doi: 10.1109/MCAS.2008.931739.

共引文献103

同被引文献62

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部