期刊文献+

冷却方式对发动机冷却系统温差发电器的影响 被引量:2

Effects of Cooling Method on Thermoelectric Generator of Engine Cooling System
下载PDF
导出
摘要 温差发电系统最重要的前提是有足够大的温差,为此通过建立基于温差发电的发动机冷却系统能量模拟回收系统,研究了冷却方式对温差发电器两端温差的影响。研究结果表明:在大循环开启之前,温差发电器两端温度基本一致,当开启大循环后,两端温度迅速升高,由于集热器材料存在热阻使得冷却水和热端之间存在温差,温差发电器本身能够导热使得两端的温差较低;采用强制风冷可以显著提高温差发电器两端温差,相比于侧面冷却,正面冷却方式更具有优势,但是只能冷却一面;采用热管连接冷端和散热片的方式能够进一步降低冷端温度,提高温差发电器两端温差。可见,冷却方式对于能量回收系统的温差有着较大的影响。 The most important premise of thermoelectric generator (TEG) system is a large enough temperature difference.The effects of cooling method on the temperature difference at the two end of TEG were thus studied through building an energy recovery simulation system for engine cooling system based on the thermoelectric generation technology.The results show that the temperatures of hot and cold end are the same and increase before and after starting the full circulation.There is a temperature difference between the coolant and hot end due to the thermal resistance of heat collector,but the difference is very small due to the conduction of TEG.It also shows that the forced air cooling method can increase the TEG temperature difference.Compared with the side cooling,the front cooling is more beneficial,but it can only cool one single surface.The method of connecting the cold end and radiator with heat pipe is applied so that the temperature at the cold end further decreases and then the temperature difference becomes large.It is concluded that the cooling method has great influence on the temperature difference of energy recovery system.
作者 马宗正 闫修鹏 王新莉 刘大成 MA Zongzheng;YAN Xiupeng;WANG Xinli;LIU Dacheng(School of Mechanical Engineering,He'nan University of Engineering,Zhengzhou 451191,China)
出处 《车用发动机》 北大核心 2019年第4期69-72,共4页 Vehicle Engine
基金 地方高校国家级大学生创新创业训练计划项目(201611517039) 河南省产学研合作试点项目(201513)
关键词 冷却系统 温差发电 冷却方式 cooling system thermoelectric generation cooling method
  • 相关文献

参考文献6

二级参考文献51

  • 1杨世铭.传热学[M].2版.北京:高等教育出版社,1987:10.
  • 2Astrain D, Vian J G, Martinez A, et al. Study of the influ- ence of heat exchangers' thermal resistances on a thermo- electric generation system [ J ]. Energy, 2010, 35: 602- 610.
  • 3Freunek M, Muller M, Ungan T, et al. New physical model for thermoelectric generators [ J ]. Journal of Electronic Materials ,2009,38 (7) : 1214-1220.
  • 4Gou X L, Xiao H, Yang S W. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system [ J ]. Applied Energy, 2010,87:3131-3136.
  • 5Yu J L, Zhao H. A numerical model for thermoelectric generator with the parallel-plate heat exchanger [ J ]. Journal of Power Sources ,2007,172:428-434.
  • 6高敏 张景韶 Rowe D W.温差电转换及其应用[M].北京:兵器工业出版社,1996.253.
  • 7Schroder S, Schwarts W, Rehpenning W, et al. Dendritic of Langhans cells and prognosis in patients with papillary thyroid carcinoma. Am J Clin Pathol 1988;89:295-298.
  • 8Lotze MT, Jaffe R. Dendritic cells: Biology and clinical applications. New York: Academic Press, 2001:425-437.
  • 9Zivogel L, Mayordomo J, Tjandrawan T, et al. Therapy of murine tumors with tumor peptide pulsed dendritric cells: dependence on T cells, B7 costimulation, and T help cell 1 associated cytokines. J Exp Med 1996;183:87.
  • 10Sauter B, Albert ML, Francisoco L, et al. Consequence of cell death: exposure to necrotic tumor cell, but not primary tissue cell or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000;191(3):423-434.

共引文献38

同被引文献19

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部