期刊文献+

基于注意力机制的卷积-双向长短期记忆模型跨领域情感分类方法 被引量:8

Cross-domain sentiment classification method of convolution-bi-directional long short-term memory based on attention mechanism
下载PDF
导出
摘要 针对现有跨领域情感分类方法中文本表示特征忽略了重要单词的情感信息,且在迁移过程中存在负迁移的问题,提出一种基于注意力机制的卷积双向长短期记忆(AC-BiLSTM)模型的知识迁移方法。首先,利用低维稠密的词向量对文本进行向量表示;其次,采用卷积操作获取局部上下文特征之后,通过双向长短期记忆(BiLSTM)网络充分考虑特征之间的长期依赖关系;然后,通过引入注意力机制考虑不同词汇对文本的贡献程度,同时为了避免迁移过程中出现负迁移现象,在目标函数中引入正则项约束;最后,将在源领域产品评论训练得到的模型参数迁移到目标领域产品评论中,并在少量目标领域有标注数据上进行微调。实验结果表明,与AE-SCL-SR方法和对抗记忆网络(AMN)方法相比,AC-BiLSTM方法的平均准确率分别提高了6.5%和2.2%,AC-BiLSTM方法可以有效地提高跨领域情感分类性能。 Concerning the problems that the text representation features in the existing cross-domain sentiment classification method ignore the sentiment information of important words and there is negative transfer during transfer process,a Convolution-Bi-directional Long Short-Term Memory based on Attention mechanism (AC-BiLSTM) model was proposed to realize knowledge transfer.Firstly,the vector representation of text was obtained by low-dimensional dense word vectors.Secondly,after local context features being obtained by convolution operation,the long dependence relationship between the features was fully considered by Bi-directional Long Short-Term Memory (BiLSTM) network.Then,the contribution degrees of different words to the text were considered by introducing attention mechanism,and a regular term constraint was introduced into the objective function in order to avoid the negative transfer phenomenon in transfer process.Finally,the model parameters trained on source domain product reviews were transferred to target domain product reviews,and the labeled data in a small number of target domains were fine-tuned.Experimental results show that compared with AE-SCL-SR (AutoEncoder Structural Correspondence Learning with Similarity Regularization) method and Adversarial Memory Network (AMN) method,AC-BiLSTM method has average accuracy increased by 6.5% and 2.2% respectively,which demonstrates that AC-BiLSTM method can effectively improve cross-domain sentiment classification performance.
作者 龚琴 雷曼 王纪超 王保群 GONG Qin;LEI Man;WANG Jichao;WANG Baoqun(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机应用》 CSCD 北大核心 2019年第8期2186-2191,共6页 journal of Computer Applications
基金 长江学者和创新团队发展计划项目(IRT_16R72)~~
关键词 情感分类 跨领域 迁移学习 注意力机制 长短期记忆网络 sentiment classification cross-domain transfer learning attention mechanism Long Short-Term Memory (LSTM) network
  • 相关文献

参考文献3

二级参考文献89

  • 1Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 2Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 3Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 5Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 6Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 7Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 8Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 9Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].
  • 10Zhai CX,Velivelli A,Yu B.A cross-collection mixture model for comparative text mining.In:Proc.of the 10th ACM SIGKDD Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM,2004.743-748.[doi:10.1145/1014052.1014150].

共引文献569

同被引文献71

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部