期刊文献+

多噪声环境下双微阵列语音增强算法 被引量:1

Dual mini micro-array speech enhancement algorithm under multi-noise environment
下载PDF
导出
摘要 为提高双微阵列语音增强系统在多噪声环境下的消噪性能,提出一种适用于双微阵列的改进广义旁瓣抵消器语音增强算法。根据双微麦克风阵列的结构特点,首先,用基于噪声互功率谱估计的改进相干滤波算法消除距离较远麦克风之间产生的弱相关噪声;然后,利用广义旁瓣抵消算法消除距离较近麦克风之间产生的强相关噪声;最后,通过基于最小值控制递归平均的子带谱减法有针对性地消除不同频带上的残留噪声。仿真实验表明,在多噪声环境下所提算法较现有的双微阵列语音增强算法取得了更好的感知语音质量评价得分,一定程度上改善了双微阵列语音增强系统对复杂噪声的抑制效果。 In order to improve the denoising performance of dual mini micro-array speech enhancement system in multi-noise environment,an improved generalized sidelobe canceller speech enhancement algorithm for dual mini micro-array was proposed.According to the structure characteristics of the dual mini micro-array,firstly,an improved coherent filtering algorithm based on noise cross-power spectrum estimation was used to eliminate the weak correlation noise between microphones with long distances.Secondly,the strong correlation noise between microphones with short distances was eliminated by using a generalized sidelobe cancelling algorithm.Finally,the minima-controlled recursive averaging based sub-band spectrum subtraction was used to eliminate the residual noise in different spectrum bands purposefully.Experimental results show that the proposed algorithm achieves better score in perceptual evaluation of speech quality than existing dual mini micro-array speech enhancement algorithms under multi-noise environment,and improves the suppression effect of dual mini micro-array speech enhancement system on complex noise to a certain extent.
作者 罗瀛 曾庆宁 龙超 LUO Ying;ZENG Qingning;LONG Chao(Ministry of Education Key Laboratory of Cognitive Radio and Information Processing(Guilin University of Electronic Technology),Guilin Guangxi 541004,China)
出处 《计算机应用》 CSCD 北大核心 2019年第8期2426-2430,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61461011) 广西自然科学重点基金资助项目(2016GXNSFDA380018) 桂林电子科技大学研究生科研创新项目(2017YJCX16、2017YJCX20)~~
关键词 双微阵列 噪声互功率谱估计 广义旁瓣抵消器 最小值控制递归平均 子带谱减 dual mini micro-array noise cross-power spectrum estimation generalized sidelobe canceller minima-controlled recursive averaging multi-band spectral subtraction
  • 相关文献

参考文献6

二级参考文献57

  • 1程翥,李双勋,薛鸿印,皇甫堪.一种简化的单约束波束形成方法[J].系统仿真学报,2007,19(12):2673-2676. 被引量:3
  • 2Brandstein M and Ward D. Microphone Arrays: Signal Processing Techniques and Applications[M]. Berlin: Springer Verlag, 2001, Chapter 1.
  • 3Doclo S and Moonen M. Superdirective beamforming robust against microphone mismatch[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(2): 617-631.
  • 4Wang L, Ding H, Yin F, et al.. Combining superdirective beamforming and frequency-domain blind source separation for highly reverberant signals[J]. EURASIP Journal on Audio Speech, and Music Processing, 2010, 2010: 1-13.
  • 5Elko G W and Pong A N. A simple adaptive first-order differential microphone[C]. IEEE Inter-national Conference on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, Oct. 1995: 169-172.
  • 6Wolff Buck M, Haulick T, and Schmidt G T. A compactmicrophone array system with spatial post-filtering for automotive applications[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Taipe, April. 2009: 221-224.
  • 7Chen J, Phua K, Shue L, et al.. Performance evaluation of adaptive dual microphone systems[J].Speech Communication, 2009, 51(12): 1180-1193.
  • 8Griffiths L and Jim C W. An alternative approach to linearly constrained adaptive beamforming[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(1): 27-34.
  • 9Chan S C and Zhou Y. On the performance analysis of a class of transform-domain NLMS algorithms with gaussian inputs and mixture gaussian additive noise environment[J]. Journal of Signal Processing Systems, 2011, 64(3): 429-445.
  • 10Huang H and Lee J. A new variable step-size NLMS algorithm and its performance analysis[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 2055-2060.

共引文献27

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部