期刊文献+

微通道折叠扁管承压能力仿真分析及优化设计 被引量:1

Simulation and Optimization Design of Pressure Bearing Capacity of Folding Flat Tube with Microchannel
下载PDF
导出
摘要 折叠管作为平行流冷凝器的重要组成部分,具有良好的极限承压能力使其逐步替代传统挤压管。本文对折叠管承压能力展开机理研究、仿真及实验分析。通过实验数据拟合得到折叠管材料应力应变数值曲线,将材料参数导入ANSYS建立折叠管爆破仿真模型,此模型仿真爆破值与实验爆破值21.9 MPa相符,通过实验对比验证了模型结果可靠性。基于对折叠管的理论分析,设计一种内插翅片双片式的新型微通道折叠管,通过仿真模型分析其内外壁厚等参数对极限承压能力的影响,得出在内片壁厚0.08 mm、外片壁厚0.2 mm、19孔时综合性能最优,相比于普通微通道管,新型折叠管体积减少了35%,极限承压值增加30%。新型折叠管不仅节约材料成本,使扁管结构更加紧凑,还具有优异的极限承压性能。 As an important part of a parallel flow condenser, folded tube has a good ultimate bearing capacity and is expected to gradually replace the conventional extruded tube. This paper presents the mechanism, simulation, and experimental analysis of a folding pipe. The numerical curves of the stress and strain of folded tube materials were obtained by fitting experimental data. The material parameters were imported into ANSYS to develop a simulation model of folded tube blasting. The simulated blasting value of this model was consistent with the experimental blasting value of 21.9 MPa. According to the theoretical analysis of the folding tube, a type of interpolation of a double folded new microchannel plate finned tube was designed, and a simulation model was established to analyze its internal and external wall-thickness parameters such as the effect on the bearing-capacity limit. We conclude that at a wall thickness of 0.08 mm, an outside wall thickness of 0.2 mm, and in the 19 th hole, optimal comprehensive performance was achieved. The new folding tube volume decreased by 35% and the ultimate bearing capacity value increased by 30% compared with those of an ordinary microchannel tube. The new folding tube not only can save material cost and make the flat tube structure more compact but also has an excellent ultimate bearing capacity.
作者 叶振鸿 俞登佳 张萍 施骏业 陈江平 Ye Zhenhong;Yu Dengjia;Zhang Ping;Shi Junye;Chen Jiangping(Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai, 200240, China;Gr nges Aluminium (Shanghai) Co., Ltd., Shanghai, 201800, China;Shanghai High Efficient Cooling System Research Center, Shanghai, 200240, China)
出处 《制冷学报》 CAS CSCD 北大核心 2019年第4期89-94,共6页 Journal of Refrigeration
基金 国家自然科学基金(51776119)资助项目~~
关键词 平行流多孔铝管 数值模拟 折叠管 有限元分析 平行流冷凝器 parallel flow porous aluminum tube numerical simulation folding tube finite element analysis parauel flow condenser
  • 相关文献

参考文献8

二级参考文献69

  • 1徐坤豪.微通道换热器新型扁管的热力学性能评价[J].电器,2013(S1):458-461. 被引量:1
  • 2宁文会,孟春秀.Conform的扩展挤压及多孔管生产[J].轻金属,1995(5):48-53. 被引量:1
  • 3曹炳阳,张清光,过增元.热质的运动与传递——微尺度导热中的热质动能效应[J].工程热物理学报,2006,27(2):274-276. 被引量:5
  • 4田晓虎,李隆键,童明伟,漆波.车用百叶窗翅片式热交换器空气侧性能的CFD研究[J].天津理工大学学报,2007,23(2):63-66. 被引量:9
  • 5Kandlikar S G,GarimeUa Srinivas, Li Dongqing, et al. Heat Transfer and fluid flow in Minichannels and Microchannels. Elsevier Science & Technology (Netherlands), 2005.
  • 6M M Shah. A general correlation of heat transfer during film condensation. Int J Heat Mass Transfer,1978 (22) :547-556.
  • 7M J Wilson,T A Newell,J C Chato,et al. Refrigerant charge,pressure drop, and condensation heat transfer in flattened tubes. International Journal of Refrigeration,2003 (26) :442-451.
  • 8A Cavallini, D Del Col, L Doretti, et al. Two-phase frictional pressure gradient of R236ea, R134a and R410A inside multi-port mini-channels. Experimental Thermal and Fluid Science,2005(29):861-870.
  • 9Nino, Victor German. Characterization of two-phase flow in microchannels. Dissertation Abstracts International, 2002 : 63.
  • 10C Y Yang,R L Webb. Condensation of R12 in small hydraulic diameter extruded aluminum tubes with and without microfins. International Journal of Heat Mass Transfer,1996(39) :793-798.

共引文献45

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部